【吴恩达机器学习】【实验二:Logistic Regression】

本文详细介绍了吴恩达机器学习课程中的Logistic Regression实验,包括数据可视化、Sigmoid函数实现、代价函数与梯度下降、参数学习及模型评估。通过ex2data1.txt数据集进行实验,最终模型预测准确率为89%。
摘要由CSDN通过智能技术生成

1.visuallizing the data.可视化数据。(在plotData.m中填写)

其中有一个文件叫ex2data1.txt存放了100行3列,每一行的三个数据分别是,第一门成绩,第二门成绩,是否录取(录取设为1,未录取设为0)。

于是我们输入代码来对这些数据可视化以便有个大致的认识,

% Find Indices of Positive and Negative Examples
% 返现正类和负类的编号。正类存到pos,负类存到neg
pos = find(y==1); neg = find(y == 0);

% Plot Examples 正类用”+”号表示,负类用”o”表示。
plot(X(pos,1), X(pos, 2),'k+','LineWidth',2, 'MarkerSize', 7);
plot(X(neg,1),X(neg,2),'ko','MarkerFaceColor', 'y','MarkerSize', 7);

于是得到下面的图片:

2.Sigmoid

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值