Task09:Boosting的思路与Adboost算法

Adaboost

思想

AdaBoost是最著名的Boosting族算法。开始时,所有样本的权重相同,训练得到第一个基分类器。从第二轮开始,每轮开始前都先根据上一轮基分类器的分类效果调整每个样本的权重,上一轮分错的样本权重提高,分对的样本权重降低。之后根据新得到样本的权重指导本轮中的基分类器训练,即在考虑样本不同权重的情况下得到本轮错误率最低的基分类器。重复以上步骤直至训练到约定的轮数结束,每一轮训练得到一个基分类器。可以想象到,远离边界(超平面)的样本点总是分类正确,而分类边界附近的样本点总是有大概率被弱分类器(基分类器)分错,所以权值会变高,即边界附近的样本点会在分类时得到更多的重视。在训练过程中,每个新的模型都会基于前一个模型的表现结果进行调整,这也就是为什么AdaBoost是自适应(adaptive)的原因,即AdaBoost可以自动适应每个基学习器的准确率。

GBDT

  • 简介
    GBDT即梯度提升树,提升方法依然采用的是加法模型与前向分布算法。以决策树为基函数的提升方法称为提升树。对分类问题决策树是二叉分类树,对回归问题决策树是二叉决策树。例如前文中的例子中所使用的决策树桩即为一个根节点直接连接两个叶节点的简单决策树。

  • 与Adboost的区别
    GBDT与Adboost最主要的区别在于两者如何识别模型的问题。Adaboost用错分数据点来识别问题,通过调整错分数据点的权重来改进模型。GBDT通过负梯度来识别问题,通过计算负梯度来改进模型。

  • 学习过程
    针对不同问题的提升树学习算法,其主要区别在于使用的损失函数不同。包括用平方误差损失函数的回归问题,是指数损失函数的分类问题,以及用一般损失函数的一般决策问题。对于分类问题,GBDT实质是把它转化为回归问题。在多分类问题中,假设有k个类别,那么每一轮迭代实质是构建了k棵树,对某个样本x的预测值为

 

𝑓1(𝑥),𝑓2(𝑥),...,𝑓𝑘(𝑥)f1(x),f2(x),...,fk(x)

 

之后使用softmax可以得到属于每一个类别的概率,此时该样本的loss即可以用logitloss来表示,并对所有类别的f(x)都可以算出一个梯度,即可以计算出当前轮的残差,供下一轮迭代学习。下面主要对回归问题的提升树进行说明。

xgboost

  • 简介
    xgboost 的全称是eXtreme Gradient Boosting,由华盛顿大学的陈天奇博士提出,在Kaggle的希格斯子信号识别竞赛中使用,因其出众的效率与较高的预测准确度而引起了广泛的关注。

  • 与Adboost的区别
    GBDT算法只利用了一阶的导数信息,xgboost对损失函数做了二阶的泰勒展开,并在目标函数之外加入了正则项对整体求最优解,用以权衡目标函数的下降和模型的复杂程度,避免过拟合。所以不考虑细节方面,两者最大的不同就是目标函数的定义,接下来就着重从xgboost的目标函数定义上来进行介绍。

参考链接:https://www.cnblogs.com/willnote/p/6801496.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值