flink 之 checkpoint 测试

本文通过一个实例详细介绍了如何在 Flink 中配置和测试 checkpoint,包括设置 checkpoint 间隔、模式、容错机制等,并演示了在 job 出现异常后如何从 checkpoint 恢复,以及使用 HiveCatalog 进行数据源操作。最后,提供了在 YARN 上提交任务以及从 checkpoint 恢复任务的命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:

CentOS7.6

CDH6.3.1

Flink1.4.0

PYTHON3.7.12

其中,Flink已经集成到CDH6.3.1中,如需获取集成过程,请关注本博客。

简介:

        从一个例子出发,模拟一遍checkpoint的设置,基于checkpoint的任务的运行时,及模拟job出现异常后从checkpoint恢复的过程。

以下为python脚本(checkpoint_test.py):

import logging

import sys

from pyflink.table import (EnvironmentSettings, TableEnvironment, DataTypes)

from pyflink.datastream import StreamExecutionEnvironment, TimeCharacteristic, CheckpointingMode, ExternalizedCheckpointCleanup, RocksDBStateBackend, FsStateBackend, MemoryStateBackend

from pyflink.table import StreamTableEnvironment, EnvironmentSettings, TableConfig,

`flink.checkpoint.timeout` 和 `flink.checkpoint.interval` 是 Flink 中与检查点相关的两个参数,它们之间存在一定的关系。 - `flink.checkpoint.timeout` 参数定义了执行检查点的超时时间,即当执行检查点操作时,如果超过了指定的超时时间仍未完成,则会被视为失败。 - `flink.checkpoint.interval` 参数定义了两次检查点之间的时间间隔,即多久执行一次检查点。 这两个参数的关系可以通过以下几点来说明: 1. `flink.checkpoint.timeout` 应该大于等于 `flink.checkpoint.interval`。确保超时时间足够长以容纳一个完整的检查点操作,否则可能会导致检查点失败。 2. 如果 `flink.checkpoint.timeout` 被设置得过小,可能会导致检查点操作在超时之前无法完成。在这种情况下,可以适当增加 `flink.checkpoint.timeout` 的值,以便给检查点操作足够的时间来完成。 3. 如果 `flink.checkpoint.interval` 被设置得过小,系统将更频繁地进行检查点操作,从而导致更高的系统开销和资源消耗。因此,在设置 `flink.checkpoint.interval` 时需要综合考虑系统的性能要求和资源限制。 需要根据应用程序的实际情况和需求来评估和调整 `flink.checkpoint.timeout` 和 `flink.checkpoint.interval` 的值。同时,还应该考虑 Flink 集群的配置和硬件资源是否能够支持所选的超时时间和间隔。在设置之后,建议进行性能测试和实际生产环境的实验来验证和优化这两个参数的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FightingFreedom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值