Flink Checkpoint机制
1.概述
Flink 定期获取所有状态的快照,并将这些快照复制到持久化的位置,例如分布式文件系统。
如果发生故障,Flink 可以恢复应用程序的完整状态并继续处理,就如同没有出现过异常。
2.开启与配置Checkpoint
默认情况下 checkpoint 是禁用的。通过调用 StreamExecutionEnvironment
的 enableCheckpointing(n)
来启用 checkpoint,里面的 n 是进行 checkpoint 的间隔,单位毫秒。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 每 1000ms 开始一次 checkpoint
env.enableCheckpointing(1000);
// 高级选项:
// 设置模式为精确一次 (这是默认值)
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 确认 checkpoints 之间的时间会进行 500 ms
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// Checkpoint 必须在一分钟内完成,否则就会被抛弃
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 允许两个连续的 checkpoint 错误
env.getCheckpointConfig().setTolerableCheckpointFailureNumber(2)
// 同一时间只允许一个 checkpoint 进行
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 使用 externalized checkpoints,这样 checkpoint 在作业取消后仍就会被保留
env.getCheckpointConfig().enableExternalizedCheckpoints(
ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// 开启实验性的 unaligned checkpoints
env.getCheckpointConfig().enableUnalignedCheckpoints();
3.State Backend
默认情况下,状态是保持在 TaskManagers 的内存中,checkpoint 保存在 JobManager 的内存中。为了合适地持久化大体量状态, Flink 支持各种各样的途径去存储 checkpoint 状态到其他的 state backends 上。通过 StreamExecutionEnvironment.setStateBackend(…)
来配置所选的 state backends。
名称 | Working State | 状态备份 | 快照 |
---|---|---|---|
RocksDBStateBackend | 本地磁盘(tmp dir) | 分布式文件系统 | 全量 / 增量 |
FsStateBackend | JVM Heap | 分布式文件系统 | 全量 |
MemoryStateBackend | JVM Heap | JobManager JVM Heap | 全量 |
提示:
RocksDBStateBackend:支持大于内存大小的状态经验法则:比基于堆的后端慢10倍
FsStateBackend:快速,需要大的堆内存受限制于 GC
MemoryStateBackend:适用于小状态(本地)的测试和实验
所有这些 state backends 都能够异步执行快照,这意味着它们可以在不妨碍正在进行的流处理的情况下执行快照。
4.状态快照如何工作
Flink 使用 Chandy-Lamport algorithm 算法的一种变体,称为异步 barrier 快照(asynchronous barrier snapshotting)。