首先祝大家1024程序员节快乐,容许我水一篇文章,这里主要介绍几种简单的算法,并结合具体事例看看它们是如何实现的

二分查找
问题描述
给定一个按从小到大顺序排列好的数组,寻找数组里的一个数字,如果找到了,就输出该数字在数组中对应的下标,找不到,就输出"没找到"
具体实现
给定一个数组arr[10]={0,1,2,3,4,5,6,7,8,9},在这个数组中寻找7并输出其下标,找不到就输出"没找到"
对这种题目,我们可以直接用循环一个一个找来确定7的下标,但毫无疑问这种算法是耗时的,低效的,其实我们可以用该数组中间的数与我们要找的数比较大小,如果数组中间的数比我们要找的数大,就说明我们要找的数在数组中间的数的左边,反之则在右边,这样反复折半查找,显然比暴力法更高效,那我们就结合示例来看一下代码:
int main()
{
int arr[10] = { 0,1,2,3,4,5,6,7,8,9 };
int sz = sizeof(arr) / sizeof(arr[0]);
int left = 0, right = sz - 1;//left为第一个数的下标,right为最后一个数的下标
int n = 0;//n是我们要找的数
scanf("%d", &n);
int mid;
while (left <= right)
{
mid = (left + right) / 2;
if (n > arr[mid])
{
left = mid+1;
}
else if (n < arr[mid])
{
right = mid;
}
else
break;
}
if (left > right)
{
printf("没找到");
}
else
{
printf("找到了,下标是:%d",mid);
}
return 0;
}
这样我们就找到了我们的目标,而目标数在左侧的情况也是同理,如果找不到该数,最终left会大于right,这样就会输出"没找到"
欧几里得算法(辗转相除法)
问题描述
计算两个正整数m,n的最大公因数
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
具体实现
如果你对该算法的原理有兴趣,可以自行了解,在这里我们只要知道它的规则就可以用代码实现了:
#include<stdio.h>
int main()
{
unsigned int m, n,sep=0;
scanf("%d%d", &m, &n);
while (n > 0)
{
sep = m % n;
m = n;
n = sep;
}
printf("%d", m);
return 0;
}
对于1997和615,该算法是这样执行的
幂运算
问题描述
写一个函数,以实现求一个数的y次幂的功能
通常实现此功能我们需要使用y-1次乘法自乘,但如果用一种递归算法,效果会更好
具体实现
int Pow(int x,int y)
{
if(y==0)
return 1;
if(y%2==0)
return Pow(x*x,y/2);
else
return Pow(x*x,y/2)*x;
}
这样就利用递归实现了求解一个数的y次幂,这是递归的一个简单用法。