1. 双指针
双指针主要用于遍历数组,两个指针指向不同的元素,从而协同完成任务。也可以延伸到多
个数组的多个指针。
1)滑动窗口
若两个指针指向同一数组,遍历方向相同且不会相交,则也称为滑动窗口(两个指针包围的
区域即为当前的窗口),经常用于区间搜索。
例题:
class Solution {
public:
int maxVowels(string s, int k)
{
int ans{0};
int count{0};
int l{0};
int r = k - 1;
string vowels{"aeiou"};
for (int i = 0; i < k; ++i) {
if (vowels.find(s[i]) != string::npos) {
count++;
}
}
ans = count;
while (r < s.size() - 1) {
r++;
l++;
if (vowels.find(s[r]) != string::npos) {
count++;
}
if (vowels.find(s[l - 1]) != string::npos) {
count--;
}
ans = max(ans, count);
}
return ans;
}
};
2)双指针
若两个指针指向同一数组,但是遍历方向相反,则可以用来进行搜索,待搜索的数组往往是排好序的。
例题:
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
int left = 0;
int right = numbers.size() - 1;
while (left < right) {
int sum{numbers[left] + numbers[right]};
if (sum == target) {
break;
}
if (sum > target) {
right--;
} else {
left++;
}
}
return vector<int> {left+1, right+1};
}
};
2. 二分法
采用左闭右开的写法,
- left和right最初的取值:left=0,right=numSize
- left和right索引时的偏移:left = mid + 1, right = mid
- while里的循环条件:left < right
- mid的取值:mid = left + (right - left) / 2
例题:
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
vector<int> ans{-1, -1};
if (nums.empty()) {
return ans;
}
int lowerBound = binsearchLower(nums, target);
int upperBound = max(0, binsearchUpper(nums, target) - 1);
ans = {lowerBound, upperBound};
if ((lowerBound > nums.size()) || (nums[upperBound] != target)) {
ans = {-1, -1};
return ans;
}
return ans;
}
int binsearchLower(const vector<int>& nums, int target) {
int l = 0;
int r = nums.size();
int mid{0};
while (l < r) {
mid = int(l + (r - l) / 2);
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
int binsearchUpper(const vector<int>& nums, int target) {
int l = 0;
int r = nums.size();
int mid{0};
while (l < r) {
mid = int(l + (r - l) / 2);
if (nums[mid] > target) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
3. DFS深度优先搜索
一般来说,深度优先搜索类型的题可以用递归或者栈来实现,用递归写法比较好写,里面会用到主函数和辅函数,
主函数用于遍历所有的搜索位置,判断是否可以开始搜索,如果可以即在辅函数进行搜索。
辅函数则负责深度优先搜索的递归调用
例题:
class Solution {
public:
// 辅函数
int LandDFS(vector<vector<int>>& grid, int i, int j)
{
// 在矩阵尺寸范围内
if((i < grid.size()) && (i >= 0) && (j < grid[0].size()) && (j >= 0)) {
if (grid[i][j] == 0) { // 碰到水
return 0;
}
else {
grid[i][j] = 0;
return 1 + LandDFS(grid, i-1, j) + LandDFS(grid, i+1, j) + LandDFS(grid, i, j-1) + LandDFS(grid, i, j+1);
}
}
else {
return 0;
}
}
// 主函数
int maxAreaOfIsland(vector<vector<int>>& grid) {
int ans = 0;
for (int i = 0; i < grid.size(); i++) {
for (int j = 0; j < grid[0].size(); j++) {
ans = max(ans, LandDFS(grid, i, j)); // 这里LandDFS(grid, i, j)返回的是含(i,j)的岛屿的面积
}
}
return ans;
}
};
更简洁写法:
class Solution {
public:
int DFS(vector<vector<int>> &grid, int x, int y) {
if (x < 0 || x >= grid.size() || y < 0 || y >= grid[0].size() || grid[x][y] == 0) {
return 0;
}
grid[x][y] = 0;
return 1+ DFS(grid, x + 1, y) + DFS(grid, x - 1, y) + DFS(grid, x, y + 1) + DFS(grid, x, y - 1);
}
int maxAreaOfIsland(vector<vector<int>> &grid) {
int ans{0};
for (int i = 0; i < grid.size(); ++i) {
for (int j = 0; j < grid[0].size(); ++j) {
ans = max(ans, DFS(grid, i, j));
}
}
return ans;
}
};
4. BFS广度优先搜索
搜索的题目优先用DFS,因为好写。只有碰到 1) 层序遍历,2) 最短路径 的题时才用BFS。
BFS使用队列,把每个还没有搜索到的点依次放入队列,然后再弹出队列的头部元素当做当前遍历点。BFS总共有两个模板:
模板1:如果不需要确定当前遍历到了哪一层,BFS模板如下。
1 while queue 不空:
2 cur = queue.pop() // 弹出队列的头部元素当做当前遍历点
3 for 节点 in cur的所有相邻节点:
4 if 该节点有效且未访问过:
5 queue.push(该节点)
模板2:如果要确定当前遍历到了哪一层,BFS模板如下。
这里增加了level表示当前遍历到二叉树中的哪一层了,也可以理解为在一个图中,现在已经走了多少步了。size表示在当前遍历层有多少个元素,也就是队列中的元素数,我们把这些元素一次性遍历完,即把当前层的所有元素都向外走了一步。
level = 0
while queue 不空:
{
size = queue.size() // size表示即将要遍历的那一层的元素个数。
while (size --) // 当size减到0时,代表这一层遍历完了
{
cur = queue.pop()
for 节点 in cur的所有相邻节点:
if 该节点有效且未被访问过:
queue.push(该节点)
}
level ++;
}
上面两个是通用模板,在任何题目中都可以用,是要记住的!
例题:
LeetCode 102. Binary Tree Level Order Traversal 二叉树的层序遍历(Medium)
本题要求二叉树的层次遍历,所以同一层的节点应该放在一起,故使用模板二。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
queue<TreeNode*> que;
que.push(root);
if (root ==nullptr) {
return res;
}
while (!que.empty()) {
int size = que.size();
vector<int> temp;
while (size--) {
TreeNode* cur = que.front();
que.pop();
temp.push_back(cur->val);
if (cur->left) {
que.push(cur->left);
}
if (cur->right) {
que.push(cur->right);
}
}
// 遍历完一层了
res.push_back(temp);
}
return res;
}
};
5. 回溯
回溯法(backtracking)是优先搜索的一种特殊情况,又称为试探法,常用于需要记录节点状
态的深度优先搜索。通常来说,排列、组合、选择类问题使用回溯法比较方便。
解题套路:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
例题:
class Solution {
public:
vector<vector<int>> permute(vector<int>& nums) {
vector<vector<int>> ans;
backtrack(nums, 0, ans);
return ans;
}
void backtrack(vector<int>& nums, int depth, vector<vector<int>>& ans)
{
if (depth == nums.size() - 1) {
ans.push_back(nums);
return;
}
for (int i = depth; i < nums.size(); ++i) {
// 修改当前节点状态
swap(nums[i], nums[depth]); // 当前数字nums[i]要和后面所有的数字都要交换一遍(包括他自己)
// 递归子节点
backtrack(nums, depth + 1, ans);
// 回改当前节点状态
swap(nums[i], nums[depth]);
}
}
};