问题:并发量激增、出现浪涌容易宕机如何解决?
业务场景描述1:多用户高并发信息查询,少量更新
业务场景描述2:并发量查询需要达到100w/s,假设更新的比例为10%,即10w/s
- 优化方案1:保证服务可用
在请求进入服务前,加nginx做负载均衡。正常流量时做负载均衡。流量激增时做限流保证服务不死。横向扩容时,便于支持动态扩容。 - 优化方案2:读写分离
- 读数据的场景多,需要针对读场景扩容、提高服务配置等,更多的保障读取正常,满足用户基本需求。
- 服务内部使用读写锁,读使用共享锁,提高读的并发,当有写请求时,有条件的阻塞。 - 优化方案3:增加缓存,提高读性能。
- cdn缓存,综合考虑内容更新的频率,比如内容每6小时或12小时主动更新(缓存命中率将得到极大提升),假设缓存命中率在90%
- 2 添加分布式缓存,nginx将请求转发值Redis,集群统一缓存服务,可大为提高缓存命中率
- 3 服务本地添加缓存,如guava cache等LRU机制的缓存内容。(减少redis雪崩等影响)
- 优化方案4:数据库的压力。
要实现百万级别QPS,假设查询的缓存命中率仅达到90%,每秒回源查询请求要达到10w/s。
一般4C16G的数据库。TPS 3000/s,QPS:10000/s。
千万级别数据量真不算大表,但遭不住密集查询。网络IO、磁盘IO瓶颈、CPU瓶颈、内存瓶颈,所以势必需要分库分表(或使用nosql等)。
- 磁盘读IO瓶颈,热点数据太多,每次查询时会产生大量的IO,降低查询速度 --> 分库和垂直分表
- 网络IO瓶颈,请求的数据太多,网络带宽不够 --> 分库
- 优化方案5:容灾、主备等
搭建容灾、主备设备。