RAG简介:
RAG 是 “Reduced Instruction Set Computer” 的缩写,中文翻译为“精简指令集计算机”。它是一种计算机架构,旨在通过减少指令集的数量来提高性能。在 RAG 架构中,每条指令都执行相对简单的操作,并且使用非常标准的格式。这使得 RAG 处理器可以更快地执行指令,并且通常比复杂指令集计算机(CISC)更加节能。
1. RAG技术主要解决了什么问题
解决通用LLM针对一些小众领域没有涉猎的问题
提升LLM回答的准确性、权威性、时效性
提高LLM回答的可控性和可解释性,提高模型的可信度和安全性
2. 什么是Rouge指标
ROUGE 指标的全称是 (Recall-Oriented Understudy for Gisting Evaluation),主要是基于召回率 (recall) 的。ROUGE 是一种常用的大模型评价指标,由 Chin-Yew Lin 提出,其在论文中提出了 4 种 ROUGE 方法:
ROUGE-N: 在 N-gram 上计算召回率 ROUGE-L: 考虑了机器译文和参考译文之间的最长公共子序列 ROUGE-W: 改进了ROUGE-L,用加权的方法计算最长公共子序列 ROUGE-S: 即使用了skip-grams,在参考摘要和待评测摘要进行匹配时,不要求gram之间必须是连续的,可以“跳过”几个单词
3. 针对通用的RAG,有哪些改进点?
优化query:做query的纠错、改写,规范化和扩展
对向量数据库做层次索引,提高检索效率和精度
对LLM模型微调,针对当前垂直领域引入知识库,提升回答的专业性、时效性和正确性
对最终输出做后处理,降低输出的不合理case
4. RAG增强检索概念
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了信息检索和自然语言生成的方法,旨在提高自然语言处理任务中的信息检索和生成能力。以下是关于RAG增强检索概念的详细解释:
RAG的核心原理:
信息检索:从大量的文本数据中检索与查询相关的信息。
自然语言生成:根据检索到的信息生成符合用户需求的自然语言文本。
RAG的作用
提高信息检索的准确性和效率:通过结合检索和生成的方法,RAG可以更准确地理解用户的查询,从而更精确地检索相关信息。
生成更贴近用户需求的自然语言文本:利用检索到的信息作为上下文,RAG可以生成更符合用户意图和需求的自然语言文本。
提供更全面的文本处理能力:结合检索和生成的优势,RAG能够处理更复杂的自然语言处理任务。
RAG的三个阶段
(1)、提取阶段
(2)、检索阶段
(3)、生成阶段
对输入查询进行理解和解析。
使用索引和检索算法从文本数据中提取相关内容。
目的是准确地捕获与查询相关的信息片段。
使用提取阶段得到的信息进一步检索相关的文本片段或信息。
可能涉及不同的检索策略和参数,以确保检索到的信息与用户查询相关且准确。
利用检索到的信息,结合自然语言生成模型(如大型语言模型),生成符合用户需求的自然语言文本。
生成的文本结果会利用检索到的信息作为上下文。
避免针对特定任务再次进行训练:通过集成外部知识库,RAG可以处理不同的自然语言处理任务,而无需为每个任务重新训练模型。
优化模型输出效果:用户可以额外附加外部知识库,丰富输入,从而优化模型的输出效果。 减少模型幻觉:通过结合外部知识库,RAG能够生成更准确、更符合上下文的答案,减少模型生成的错误或不正确内容。
减少模型幻觉:通过结合外部知识库,RAG能够生成更准确、更符合上下文的答案,减少模型生成的错误或不正确内容。
5. 应用场景
RAG技术在知识密集型NLP任务中表现出色,如问答系统、文本摘要、对话系统等。在这些任务中,RAG能够提供更准确、更全面的文本处理能力,满足用户的不同需求。
RAG的流程如下:
- 1文档加载
- 2文档分割
- 3文档向量化
-4构建知识库
- 5基于知识库的问答
6. 什么是RAG技术,技术架构是什么?
RAG(Retrieval Augmented Generation),即检索增强生成技术,是LLM(Large Language Model)的增强技术,通过检索的方式,将文档中的信息引入到LLM中,从而实现对文档的检索和理解。
技术架构如下
文档加载->文档分块->文本向量化->构建知识库->query向量化->向量检索->生成Prompt->prompt提交LLM->输出结果