Hadoop基础之《(11)—整合HBase+Phoenix+Hive—安装Hive》

一、什么是Hive

1、Hive简介
Hive是由Facebook开源,基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive主要是做海量数据的分析和计算的。

2、为什么会有Hive?它解决了什么问题?
下面通过一个案例,来快速了解一下Hive。
例如:需求,统计单词出现个数。
(1)在Hadoop中我们用MapReduce程序实现的,需要些Mapper、Reducer和Driver三个类,并实现对应逻辑,相对繁琐。
(2)如果通过Hive SQL实现,一行就搞定了,简单方便,容易理解。

3、Hive本质
Hive是一个Hadoop客户端,用于将HQL(Hive SQL)转化为MapReduce程序。
(1)Hive中每张表的数据存储在HDFS。
(2)Hive分析数据底层的实现是MapReduce(也可配置为Spack或者Tez)。
(3)执行程序运行在Yarn上。

二、Hive架构原理

1、架构图

2、服务
Metastore:存储元数据,表字段、表数据在hdfs上的路径等
HiveServer2:提供jdbc或odbc访问接口,提供用户认证功能
Hive Client:Hive客户端

3、执行流程
(1)用户创建table
(2)Metastore中记录对应表的路径
(3)在hdfs中映射表关系
(4)用户根据业务需求编写相应的HQL语句
(5)Driver翻译sql为MapReduce
(6)提交yarn执行
(7)将结果写入hdfs路径或临时表
(8)如果是查询语句,返回计算结果

4、用户接口:Client
CLI(command-line interface)、JDBC/ODBC。
说明:JDBC和ODBC的区别。
(1)JDBC的移植性比ODBC好。
(2)两者使用的语言不同,JDBC在Java编程时使用,ODBC一般在C/C++编程时使用。

5、元数据:Metastore
元数据包括:数据库(默认是default)、表名、表的拥有者、列/分区字段、表的类型(是否外部表)、表的数据所在目录等。
默认存储在自带的derby数据库中,由于derby数据库只支持单客户端访问,生产环境中为了多人开发,推荐使用MySQL存储Metastore,但是安装配置太麻烦。

6、驱动器:Driver
(1)解析器(SQLParser):将SQL字符串转换成抽象语法树(AST)。
(2)语义分析(Semantic Analyzer):将AST进一步划分为QueryBlock。
(3)逻辑计划生成器(Logical Plan Gen):将语法树生成逻辑计划。
(4)逻辑优化器(Logical Optimizer):对逻辑计划进行优化。
(5)物理计划生成器(Physical Plan Gen):根据优化后的逻辑计划生成物理计划。
(6)物理优化器(Physical Optimizer):对物理计划进行优化。
(7)执行器(Execution):执行该计划,得到查询结果并返回给客户端。

三、Hive安装

1、下载安装包

cd /tmp
wget https://dlcdn.apache.org/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz
tar -zxvf apache-hive-3.1.3-bin.tar.gz -C /appserver
cd /appserver
mv apache-hive-3.1.3-bin/ hive

2、配置环境变量

vi /etc/profile
添加
export HIVE_HOME=/appserver/hive
export PATH=$PATH:$HIVE_HOME/bin
使配置生效
source /etc/profile

3、初始化元数据库(默认是derby数据库,不使用)
bin/schematool -dbType derby -initSchema
因为内嵌数据库,只能使用本机命令行客户端,不能使用外部JDBC/ODBC客户端。

四、Hive连接mysql

1、安装mysql
略过
搜索rpm包的网站:https://pkgs.org/

2、下载mysql驱动jar包
将mysql的JDBC驱动拷贝到hive的lib目录下。

cp /tmp/mysql-connector-j-8.0.32.jar $HIVE_HOME/lib

3、mysql中创建metastore数据库和hive用户

create database metastore default charset utf8mb4 collate utf8mb4_general_ci;
create user 'hive'@'%' identified by 'hive';
grant all privileges on metastore.* to 'hive'@'%';
flush privileges;

4、在$HIVE_HOME/conf目录下,建立hive-site.xml文件

cd /appserver/hive/conf
vi hive-site.xml
添加
<configuration>
  <!-- jdbc连接的URL -->
  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://192.168.52.11:3306/metastore?serverTimezone=UTC</value>
    <description>
      JDBC connect string for a JDBC metastore.
      To use SSL to encrypt/authenticate the connection, provide database-specific SSL flag in the connection URL.
      For example, jdbc:postgresql://myhost/db?ssl=true for postgres database.
    </description>
  </property>
  <!-- jdbc连接的Driver -->
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
    <description>Driver class name for a JDBC metastore</description>
  </property>
  <!-- jdbc连接的username -->
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
    <description>Username to use against metastore database</description>
  </property>
  <!-- jdbc连接的password -->
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>hive</value>
    <description>password to use against metastore database</description>
  </property>
  <!-- hive默认在HDFS的工作目录 -->
  <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/user/hive/warehouse</value>
    <description>location of default database for the warehouse</description>
  </property>
</configuration>

5、初始化hive元数据库

bin/schematool -dbType mysql -initSchema

6、验证元数据是否配置成功

bin/hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/appserver/hive/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/appserver/hadoop/hadoop-3.3.4/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Hive Session ID = 17c34420-ff60-4aa8-975b-abd7e121e22a

Logging initialized using configuration in jar:file:/appserver/hive/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true
Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.
Hive Session ID = bd993361-f2c9-4cfc-8dff-3e1bf157edf9
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> show databases;
OK
default
Time taken: 0.494 seconds, Fetched: 1 row(s)

7、使用hive

hive> create table stu(id int, name string);
OK
Time taken: 0.807 seconds
hive> insert into stu values(1,"ss");
Query ID = root_20230209122931_16eca7d9-d918-4d48-8611-02e51d6b3c9b
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1675910632302_0001, Tracking URL = http://hadoop001:8088/proxy/application_1675910632302_0001/
Kill Command = /appserver/hadoop/hadoop-3.3.4/bin/mapred job  -kill job_1675910632302_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2023-02-09 12:29:54,504 Stage-1 map = 0%,  reduce = 0%
2023-02-09 12:30:22,464 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.84 sec
2023-02-09 12:30:31,668 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 3.25 sec
MapReduce Total cumulative CPU time: 3 seconds 250 msec
Ended Job = job_1675910632302_0001
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://hadoop001:8020/user/hive/warehouse/stu/.hive-staging_hive_2023-02-09_12-29-31_229_8346627652307208831-1/-ext-10000
Loading data to table default.stu
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 3.25 sec   HDFS Read: 15184 HDFS Write: 235 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 250 msec
OK
Time taken: 65.381 seconds
hive> select * from stu;
OK
1	ss
Time taken: 0.516 seconds, Fetched: 1 row(s)

五、hive元数据库介绍

1、DBS表
存储数据库信息。

2、TBLS表
存储我们在hive中创建表的信息。

3、SDS表
存储建的表的位置信息。

4、COLUMNS_V2表
存储和字段相关的信息。

六、hiveserver2服务部署

1、hiveserver2服务
Hive的hiveserver2服务的作用是提供jdbc/odbc接口,为用户提供远程访问Hive数据的功能,例如用户期望在个人电脑中访问远程服务中的Hive数据,就需要hiveserver2。

2、访问用户说明
在远程访问Hive数据时,客户端并未直接访问Hadoop集群,而是由hiveserver2代理访问。由于Hadoop集群中的数据具备访问权限控制,所以此时需考虑一个问题:那就是访问Hadoop集群的用户身份是谁?是hiveserver2的启动用户?还是客户端的登录用户?
答案是都有可能,具体是谁,由hiveserver2的hive.server2.enable.doAs参数决定,该参数的含义是是否启用hiveserver2用户模拟的功能。若启用,则hiveserver2会模拟成客户端的登录用户去访问Hadoop集群的数据,不启用,则hiveserver2会直接使用启动用户访问Hadoop集群数据。
模拟用户的功能默认是开启的。

生产环境,推荐开启用户模拟功能,因为开启后才能保证各用户之间的权限隔离。

3、Hadoop配置代理用户
hiveserver2的模拟用户功能,依赖于Hadoop提供的proxy user(代理用户功能),只有Hadoop中的代理用户才能模拟其他用户的身份访问Hadoop集群。因此,需要将hiveserver2的启动用户设置为Hadoop的代理用户。

4、修改hadoop配置文件core-site.xml(例子,按实际情况修改)

cd $HADOOP_HOME/etc/hadoop
vi core-site.xml
添加
    <!-- 配置所有节点的user001用户都可作为代理用户 -->
    <property>
        <name>hadoop.proxyuser.user001.hosts</name>
        <value>*</value>
    </property>
    <!-- 配置user001用户能够代理的用户组为任意组 -->
    <property>
        <name>hadoop.proxyuser.user001.groups</name>
        <value>*</value>
    </property>
    <!-- 配置user001用户能够代理的用户为任意用户 -->
    <property>
        <name>hadoop.proxyuser.user001.users</name>
        <value>*</value>
    </property>

说明:
(1)配置代理用户
<name>hadoop.proxyuser.user001.hosts</name>
<value>*</value>
将哪个节点的哪个用户作为hadoop的代理用户,下面的value值是节点的主机名。允许所有节点上面的user001用户作为代理用户。谁启动hiveserver2用户名就写谁。

(2)配置代理用户能代理哪个组
<name>hadoop.proxyuser.user001.groups</name>
<value>*</value>
user001这个代理用户可以代理所有的组。

(3)配置代理用户能代理哪些用户
<name>hadoop.proxyuser.user001.users</name>
<value>*</value>
user001用户,能代理所有用户。

5、重启hadoop

6、修改hive配置文件hive-site.xml

cd $HIVE_HOME/conf
vi hive-site.xml
添加
    <!-- 指定hiveserver2连接的host -->
    <property>
        <name>hive.server2.thrift.bind.host</name>
        <value>hadoop001</value>
    </property>
    <!-- 指定hiveserver2连接的端口号 -->
    <property>
        <name>hive.server2.thrift.port</name>
        <value>10000</value>
    </property>

配置hive日志:

cd $HIVE_HOME/conf
cp hive-log4j2.properties.template hive-log4j2.properties
vim hive-log4j2.properties
修改
property.hive.log.dir = /appserver/hive/logs

7、测试
(1)启动hiveserver2

bin/hive --service hiveserver2
或者
bin/hiveserver2
后台启动
nohup hiveserver2 >> /appserver/hive/logs/hiveserver2.log 2>&1 &
停止
ps -ef|grep hiveserver2|grep -v 'grep'|awk '{print $2}'|xargs -n1 kill -9

2023-02-15 16:17:07: Starting HiveServer2
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/appserver/hive/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/appserver/hadoop/hadoop-3.3.4/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Hive Session ID = f60d9227-c830-49a9-9b51-9e279dc9597f
Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.

RunJar就是hiveserver2

jps -ml

7360 org.apache.zookeeper.server.quorum.QuorumPeerMain /appserver/zookeeper/bin/../conf/zoo.cfg
7073 org.apache.hadoop.yarn.server.nodemanager.NodeManager
8533 org.apache.hadoop.util.RunJar /appserver/hive/lib/hive-service-3.1.3.jar org.apache.hive.service.server.HiveServer2
6393 org.apache.hadoop.hdfs.server.datanode.DataNode
8825 sun.tools.jps.Jps -ml
6266 org.apache.hadoop.hdfs.server.namenode.NameNode
6842 org.apache.hadoop.yarn.server.resourcemanager.ResourceManager
7322 org.apache.hadoop.mapreduce.v2.hs.JobHistoryServer
6603 org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode
7822 org.apache.hadoop.hbase.regionserver.HRegionServer start

七、hiveserver2应用

1、使用命令行客户端beeline进行远程访问
(1)启动

cd /appserver/hive/bin
./beeline
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/appserver/hive/lib/log4j-slf4j-impl-2.17.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/appserver/hadoop/hadoop-3.3.4/share/hadoop/common/lib/slf4j-reload4j-1.7.36.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Beeline version 3.1.3 by Apache Hive
beeline> 

(2)连接

beeline> !connect jdbc:hive2://hadoop001:10000
Connecting to jdbc:hive2://hadoop001:10000
Enter username for jdbc:hive2://hadoop001:10000: root
Enter password for jdbc:hive2://hadoop001:10000: 
Connected to: Apache Hive (version 3.1.3)
Driver: Hive JDBC (version 3.1.3)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://hadoop001:10000> 

输入的用户名就是hiveserver2以什么身份访问hadoop,密码由于没有启用认证功能直接回车。

(3)执行sql语句

0: jdbc:hive2://hadoop001:10000> show tables;
INFO  : Compiling command(queryId=root_20230222140625_743ec057-5e62-4073-acc7-7b849fe994e2): show tables
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:tab_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=root_20230222140625_743ec057-5e62-4073-acc7-7b849fe994e2); Time taken: 0.572 seconds
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Executing command(queryId=root_20230222140625_743ec057-5e62-4073-acc7-7b849fe994e2): show tables
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=root_20230222140625_743ec057-5e62-4073-acc7-7b849fe994e2); Time taken: 0.08 seconds
INFO  : OK
INFO  : Concurrency mode is disabled, not creating a lock manager
+-----------+
| tab_name  |
+-----------+
| stu       |
+-----------+
1 row selected (0.951 seconds)
0: jdbc:hive2://hadoop001:10000> 
0: jdbc:hive2://hadoop001:10000> select * from stu;
INFO  : Compiling command(queryId=root_20230222140741_60a79525-fab0-483c-8e0f-a8090fa79107): select * from stu
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:stu.id, type:int, comment:null), FieldSchema(name:stu.name, type:string, comment:null)], properties:null)
INFO  : Completed compiling command(queryId=root_20230222140741_60a79525-fab0-483c-8e0f-a8090fa79107); Time taken: 1.132 seconds
+---------+-----------+
| stu.id  | stu.name  |
+---------+-----------+
| 1       | ss        |
+---------+-----------+
1 row selected (1.363 seconds)
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Executing command(queryId=root_20230222140741_60a79525-fab0-483c-8e0f-a8090fa79107): select * from stu
INFO  : Completed executing command(queryId=root_20230222140741_60a79525-fab0-483c-8e0f-a8090fa79107); Time taken: 0.001 seconds
INFO  : OK
INFO  : Concurrency mode is disabled, not creating a lock manager
0: jdbc:hive2://hadoop001:10000> 

(4)一键登录

beeline -u jdbc:hive2://hadoop001:10000 -n root

2、图形化客户端
免费的DBeaver
收费的DataGrip图形化客户端

八、Metastore概述

Hive的metastore服务的作用是为Hive CLI或者Hiveserver2提供元数据访问接口。

1、metastore运行模式
metastore有两种运行模式,分别为嵌入式模式和独立服务模式。下面分别对两种模式进行说明。

(1)嵌入式模式
获取元数据时,Hiveserver2、Hive CLI直接连接mysql数据库。

(2)独立服务模式
单独启动一个metastore服务。

2、生产环境中,不推荐使用嵌入式模式
(1)嵌入式模式下,每个Hive CLI都需要直接连接元数据库,当Hive CLI较多时,数据库压力会比较大。
(2)每个客户端都需要用户元数据库的读写权限,元数据库的安全得不到很好的保证。

九、Metastore配置

1、嵌入式模式配置
嵌入式模式下,只需保证Hiveserver2和每个Hive CLI的配置文件hive-site.xml中包含连接元数据所需要的参数即可。

  <!-- jdbc连接的URL -->
  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://192.168.52.11:3306/metastore?serverTimezone=UTC</value>
    <description>
      JDBC connect string for a JDBC metastore.
      To use SSL to encrypt/authenticate the connection, provide database-specific SSL flag in the connection URL.
      For example, jdbc:postgresql://myhost/db?ssl=true for postgres database.
    </description>
  </property>
  <!-- jdbc连接的Driver -->
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.cj.jdbc.Driver</value>
    <description>Driver class name for a JDBC metastore</description>
  </property>
  <!-- jdbc连接的username -->
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
    <description>Username to use against metastore database</description>
  </property>
  <!-- jdbc连接的password -->
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>hive</value>
    <description>password to use against metastore database</description>
  </property>

2、独立服务模式配置
首先,保证metastore服务的配置文件hive-site.xml中包含连接元数据库所需的参数。
其次,保证Hiveserver2和每个Hive CLI的配置文件hive-site.xml中包含访问metastore服务的参数。

    <!-- 指定metastore服务的地址 -->
    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://hadoop001:9083</value>
    </property>

注意:主机名需要改为metastore服务所在节点,端口号无需修改,metastore服务的默认端口就是9083。

3、启动metastore服务

nohup hive --service metastore &

4、停止metastore服务

ps -ef|grep metastore|grep -v 'grep'|awk '{print $2}'|xargs -n1 kill -9

5、查看

jps -ml
3009 org.apache.zookeeper.server.quorum.QuorumPeerMain /appserver/zookeeper/bin/../conf/zoo.cfg
3587 org.apache.hadoop.util.RunJar /appserver/hive/lib/hive-service-3.1.3.jar org.apache.hive.service.server.HiveServer2
3492 org.apache.hadoop.hbase.regionserver.HRegionServer start
2950 org.apache.hadoop.mapreduce.v2.hs.JobHistoryServer
6118 sun.tools.jps.Jps -ml
5993 org.apache.hadoop.util.RunJar /appserver/hive/lib/hive-metastore-3.1.3.jar org.apache.hadoop.hive.metastore.HiveMetaStore
1754 org.apache.hadoop.hdfs.server.namenode.NameNode
3274 org.apache.hadoop.hbase.master.HMaster start
2571 org.apache.hadoop.yarn.server.nodemanager.NodeManager
1901 org.apache.hadoop.hdfs.server.datanode.DataNode
2159 org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode
2415 org.apache.hadoop.yarn.server.resourcemanager.ResourceManager

6、如果同时配置jdbc和metastore,优先使用metastore。

参考资料:
启动脚本
https://blog.51cto.com/qchenz/5847300

十、其他

1、start-BigData.sh

#!/bin/bash
echo "============================================"
/appserver/hadoop/hadoop-3.3.4/sbin/start-dfs.sh
/appserver/hadoop/hadoop-3.3.4/sbin/start-yarn.sh
mapred --daemon start historyserver
echo "============================================"
/appserver/zookeeper/bin/zkServer.sh start
start-hbase.sh
echo "============================================"
nohup hive --service metastore &
echo "============================================"
nohup hiveserver2 >> /appserver/hive/logs/hiveserver2.log 2>&1 &
echo "============================================"

2、stop-BigData.sh

#!/bin/bash
echo "============================================"
ps -ef|grep hiveserver2|grep -v 'grep'|awk '{print $2}'|xargs -n1 kill -9
echo "============================================"
ps -ef|grep metastore|grep -v 'grep'|awk '{print $2}'|xargs -n1 kill -9
echo "============================================"
stop-hbase.sh
/appserver/zookeeper/bin/zkServer.sh stop
echo "============================================"
mapred --daemon stop historyserver
/appserver/hadoop/hadoop-3.3.4/sbin/stop-yarn.sh
/appserver/hadoop/hadoop-3.3.4/sbin/stop-dfs.sh
echo "============================================"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值