机器学习
文章平均质量分 71
csj50
这个作者很懒,什么都没留下…
展开
-
深度学习基础之《TensorFlow框架(18)—卷积神经网络(2)》
卷积运算的目的是特征提取,第一层卷积层可能只能提取一些低级的特征,如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。卷积神经网络中每层卷积层由若干卷积单元(卷积核)组成,每个卷积单元的参数都是通过反向传播算法最佳化得到的。卷积核我们可以理解为一个观察的人,带着若干权重和一个偏置去观察,进行特征加权运算。1、卷积层(Convolutional Layer)介绍。卷积核 - Filter - 过滤器 - 模型参数。2、卷积核(Filter)的四大要素。(4)卷积核零填充大小。原创 2024-05-17 17:15:48 · 274 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(17)—卷积神经网络》
(4)通常所说的深度学习,一般指的是这些CNN等新的结构以及一些新的方法(比如新的激活函数Relu等),解决了传统多层神经网络的一些难以解决的问题。(2)卷积神经网络CNN,在原来多层神经网络的基础上,加入了更加有效的特征学习部分,具体操作就是在原来的全连接层前面加入了卷积层和池化层。(1)传统意义上的多层神经网络是只有输入层、隐藏层、输出层。随着人工智能需求的提升,我们想要做复杂的图像识别,做自然语言处理,做语义分析翻译等等,多层神经网络的简单叠加显然力不从心。2、卷积神经网络与传统多层神经网络对比。原创 2024-05-09 10:40:30 · 650 阅读 · 1 评论 -
深度学习基础之《TensorFlow框架(16)—神经网络案例》
每一个mnist数据单元有两部分组成:一张包含手写数字的图片和一个对应的标签。我们把这些图片设为“xs”,把这些标签设为“ys”。训练数据集和测试数据集都包含xs和ys。比如训练数据集的图片是mnist.train.images,训练数据集的标签是mnist.train.labels。mnist数据集是一个经典的数据集,其中包括70000个样本,包括60000个训练样本和10000个测试样本。2、下载地址:http://yann.lecun.com/exdb/mnist/一、mnist手写数字识别。原创 2024-04-29 14:51:38 · 502 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(15)—神经网络》
人工神经网络(Artificial Neural Network,简写为ANN)。也简称为神经网络(NN)是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的计算模型。经典的神经网络结构包含三个层次的神经网络。分别为输入层、输出层以及隐藏层。原创 2024-04-24 11:07:06 · 459 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(14)—TFRecords》
1、TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件。(3)将协议内存块序列化为字符串,并且通过tf.io.TFRecordWriter写入到TFRecords文件。(2)将数据填入到Example协议内存块(protocol buffer)3、文件格式*.tfrecords。一、什么是TFRecords文件。二、Example结构解析。原创 2024-04-23 16:31:45 · 479 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(13)—二进制数据》
接下来的3072个字节是图像像素的值。前1024个字节是红色通道值,下1024个是绿色通道值,最后1024个是蓝色通道值。CIFAR-10数据集由10个类别的60000个32x32彩色图像组成,每个类别有6000个图像。每个文件都包含10000个这样的3073字节的行图像,但没有任何分隔行的限制。二进制数据文件包含data_batch_1.bin 到 data_batch_5.bin、test_batch.bin。3、data_batch_1.bin 到 data_batch_5.bin 训练集。原创 2024-04-22 17:27:21 · 417 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(12)—图片数据》
文本特征抽取:转换成数值,二维数组shape(n_samples, m_features)字典特征抽取:转换成数值,二维数组shape(n_samples, m_features)组成一张图片特征值是所有的像素值,有三个维度:图片长度、图片宽度、图片通道数。我们经常接触到的图片有两种,一种是黑白图片(灰度图),另一种是彩色图片。图片:转换成数值,三维数组shape(图片长度、图片宽度、图片通道数)描述一个像素点,如果是灰度图,那么只需要一个数值来描述它,就是单通道。灰度图[长,宽,1]彩色图[长,宽,3]原创 2024-04-19 17:38:33 · 409 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(11)—数据读取》
除此以外,还有Dataset.repeat()(重复数据集的元素)、Dataset.reduce()(与Map相对的聚合操作)、Dataset.take()(截取数据集中的前若干个元素)等,可参考API文档进一步了解。将数据集打乱(设定一个固定大小的缓冲区(Buffer),取出前buffer_size个元素放入,并从缓冲区中随机采样,采样后的数据用后续数据替换)对数据集中的每个元素应用函数f,得到一个新的数据集(这部分往往结合tf.io进行读写和解码文件,tf.image进行图像处理)原创 2024-03-31 18:21:17 · 767 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(10)—案例:实现线性回归(2)》
3、如果需要在TensorFlow2.0中使用静态图,可以使用@tf.function装饰器将普通Python函数转换成对应的TensorFlow计算图构建代码。2、而在TensorFlow2.0时代,采用的是动态计算图,即每使用一个算子后,该算子会被动态加入到隐含的默认计算图中立即执行得到结果,而无需开启Session。1、在TensorFlow1.0时代,采用的是静态计算图,需要先使用TensorFlow的各种算子创建计算图,然后再开启一个会话Session,显式执行计算图。收集高维度的变量参数。原创 2024-03-22 17:00:04 · 738 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(9)—案例:实现线性回归》
(3)这里将数据分布的规律确定,是为了使我们训练出的参数跟真实的参数(即0.8和0.7)比较是否训练准确。(4)当梯度下降到一定程度,使得损失函数比较小的时候,所对应的权重和偏置,就是我们要求的模型参数。y_predict = x * 权重(1, 1) + 偏置(1, 1)(2)learning_rate:学习率,一般为0-1之间比较小的值。(2)数据本身的分布为 y = 0.8 * x + 0.7。(1)有个假设函数,假定特征值和目标值满足这样的关系。100行1列,乘以1行1列,得出100行1列。原创 2024-03-20 17:22:12 · 548 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(8)—高级API介绍》
在模块中,已经实现了几种简单的分类器和回归器,包括:Baseline、Learning和DNN。这里的DNN的网络,只是全连接网络,没有提供卷积网络。tf.contrib.layers提供了能够将计算图中的网络层、正则化、摘要操作,是构建计算图的高级操作,但是tf.contrib包含不稳定和实验代码,有可能以后API会改变。这个模块相当于为TensorFlow进行的脚本提供一个main函数入口,可以定义脚本运行的flags。这个模块提供了一些训练器,与tf.nn组合起来,实现一些网络的优化计算。原创 2024-03-19 15:14:26 · 303 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(7)—变量》
默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True,变量也被添加到图形集合[GraphKeys.TRAINABLE_VARIABLES]1、TensorFlow变量是表示程序处理的共享持久状态的最佳方法。这里的变量和传统认知里存储值或者返回值不一样,他是TensorFlow里的一个组件。(3)collections:新变量将添加到列出的图的集合中collections。2、变量需要显示初始化,才能运行值(TensorFlow2.0版本不需要)原创 2024-03-19 14:14:12 · 510 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(6)—张量》
张量Tensor和ndarray是有联系的,当我们print()打印值的时候,它返回的就是ndarray对象。TensorFlow的张量就是一个n维数组,类型为tf.Tensor。矩阵,二维数组 [[2,3,4],[2,3,4]]向量,一维数组 [2,3,4]标量,可以看做0阶张量。向量,可以看做1阶张量。矩阵,可以看做2阶张量。(2)shape:形状(阶)张量,在计算机当中如何存储?(1)type:数据类型。原创 2024-02-20 20:49:52 · 821 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(5)—会话》
(2)tf.compat.v1.InteractiveSession:用于交互式上下文中的TensorFlow,比如想验证下自己的想法。一个运行TensorFlow operation的类。会话包含以下两种开启方式。2.x版本由于是即时执行模式,所以不需要会话。但是可以手工开启会话。(1)tf.compat.v1.Session:用于完整的程序当中。在2.x版本中没有eval()函数了,用numpy()函数代替。2、InteractiveSession例子。原创 2024-02-18 16:03:52 · 482 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(4)—Operation》
(1)一个操作对象(Operation)是TensorFlow图中的一个节点,可以接收0个或者多个输入Tensor,并且可以输出0个或者多个Tensor,Operation对象是通过op构造函数(如tf.matmul())创建的。(2)例如c = tf.matmul(a, b)创建了一个Operation对象,类型为MatMul类型,它将张量a、b作为输入,c作为输出。(3)其中tf.matmul()是函数,在执行matmul函数的过程中会通过MatMul类型创建一个与之对应的对象。原创 2024-02-17 14:31:51 · 597 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(3)—TensorBoard》
2、TensorFlow可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了方便TensorFlow程序的理解、调试和优化,TensorFlow提供了TensorBoard可视化工具。1、TensorFlow有一个亮点就是,我们能看到自己写的程序的可视化效果,这个功能就是TensorBoard。一、TensorBoard可视化学习。1、数据序列化events文件。二、实现程序可视化过程。原创 2024-02-17 10:20:15 · 421 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(2)—图》
(1)通过调用tf.compat.v1.get_default_graph()访问,要将操作添加到默认图形中,直接创建OP即可。1、图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据。图结构:数据(Tensor) + 操作(Operation)(2)op、sess都含有graph属性,默认都在一张图中。通常TensorFlow会默认帮我们创建一张图。原创 2024-02-16 15:23:11 · 927 阅读 · 0 评论 -
深度学习基础之《TensorFlow框架(1)—TF数据流图》
TensorFlow1.x构建和执行是分成两个步骤,TensorFlow2.x升级到了即时执行模式,所以就不需要会话了。TensorFlow1.x中跨一个或多个本地或远程设备运行数据流图的机制。1、TensorFlow程序通常被组织成一个构建图阶段和一个执行图阶段。这是TensorFlow将计算表示为指令之间的依赖关系的一种表示法。在构建阶段,数据与操作的执行步骤被描述成一个图。在执行阶段,使用会话执行构建好的图中的操作。一、TensorFlow实现一个加法运算。提供图当中执行的操作。原创 2024-02-16 14:13:02 · 587 阅读 · 0 评论 -
深度学习基础之《深度学习介绍》
(2)深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,将数据从一层传递到另一层来构建更复杂的模型。通过训练大量数据自动得出模型,不需要人工特征提取环节。(1)机器学习的特征工程步骤是要靠手工完成的,而且需要大量领域专业知识。深度学习:没有人工特征提取,直接将特征值传进去。机器学习:人工特征提取 + 分类算法。一、深度学习与机器学习的区别。原创 2024-02-12 15:25:31 · 1041 阅读 · 0 评论 -
数据分析基础之《pandas(8)—综合案例》
数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data。对于这一组电影数据,如果我们想看Rating、Runtime (Minutes)的分布情况,应该如何呈现数据?对于这一组电影数据,如果我们希望统计电影分类genre的情况,应该如何处理数据?想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?1、现在我们有一组从2006年到2016年1000部最流行的电影数据。原创 2024-02-12 11:16:21 · 752 阅读 · 0 评论 -
数据分析基础之《pandas(7)—高级处理2》
按照行或者列进行合并,axis=0为列索引,axis=1为行索引。如果数据由多张表组成,那么有时候需要将不同的内容合并在一起分析。将刚才处理好的one-hot编码与原数据合并。1、先回忆下numpy中如何合并。原创 2024-02-10 14:41:38 · 810 阅读 · 0 评论 -
数据分析基础之《pandas(6)—高级处理》
(2)如果要珍惜每一个样本,可以替换/插补(计算平均值或中位数)False:不替换修改原数据,生成新的对象。(1)如果样本量很大,可以删除含有缺失值的样本。存在缺失值nan,并且是np.nan。(3)缺失值不是nan,是其他标记的。True:会修改原数据。2、判断数据是否为nan。value:替换成的值。1、电影数据文件获取。原创 2024-02-07 17:26:22 · 560 阅读 · 0 评论 -
数据分析基础之《pandas(5)—文件读取与存储》
1、我们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多文件格式,如CSV、SQL、XLS、JSON、HDF5。usecols:如果一个数据集中有很多列,但是我们在读取的时候只想要使用到的列,我们就可以使用这个参数。filepath_or_buffer:文件路径。原创 2024-02-02 16:24:44 · 599 阅读 · 0 评论 -
数据分析基础之《pandas(4)—pandas画图》
scatter 散点图。原创 2024-02-02 16:01:46 · 441 阅读 · 0 评论 -
数据分析基础之《pandas(3)—DataFrame运算》
3、想要得到每天的涨跌幅大小,求出每天close-open价格差。1、逻辑运算符号、|、&expr:查询字符串。原创 2024-02-01 14:20:15 · 725 阅读 · 0 评论 -
数据分析基础之《pandas(2)—基本数据操作》
1、numpy当中我们已经讲过使用索引选取序列和切片选择,pandas也支持类似操作。2、直接使用行列索引(先列后行)一、读取一个真实的股票数据。原创 2024-01-31 14:18:52 · 512 阅读 · 0 评论 -
数据分析基础之《pandas(1)—pandas介绍》
1、numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas用在什么地方。1、2008年Wes McKinney(韦斯·麦金尼)开发出的库。3、以numpy为基础,借力numpy模块在计算方面性能高的优势。4、封装了matplotlib、numpy的画图和计算。4、基于matplotlib能够简便的画图。2、专门用于数据分析的开源python库。1、pandas三大数据结构。1、DataFrame结构。2、如何创建更有意义的数据。2、便捷的数据处理能力。原创 2024-01-08 23:06:58 · 672 阅读 · 0 评论 -
数据分析基础之《numpy(6)—IO操作与数据处理》
fname:文件名,也可以是字符串、列表、StringIO对象、迭代器等,如果是文件名是 '.gz' or '.bz2',还可以自动解压处理。但是numpy其实并不适合用来读取和处理数据,因此我们这里了解相关API,以及numpy不方便的地方即可。大多数数据并不是我们自己构造的,而是存在文件当中,需要我们用工具获取。delimiter:分隔符(比如一般使用",")dtype:指定数据类型(不同类型需要指定)numpy是运算工具,所以不支持读取字符串。但是有问题,第一行字符串没有读出来。原创 2024-01-03 21:27:37 · 667 阅读 · 0 评论 -
数据分析基础之《numpy(5)—合并与分割》
实现数据的切分和合并,将数据进行切分合并处理。指定轴,选择竖直或水平拼接。原创 2023-12-20 14:33:26 · 770 阅读 · 0 评论 -
数据分析基础之《numpy(4)—ndarry运算》
当我们要操作符合某一条件的数据时,需要用到逻辑运算。原创 2023-12-19 11:22:29 · 510 阅读 · 0 评论 -
数据分析基础之《numpy(3)—基本操作》
我们需要占用位置,或者生成一个空的数组。1、adarray.方法()为什么需要生成0和1的数组?2、np.函数名()1、生成0和1的数组。原创 2023-12-13 16:53:19 · 246 阅读 · 0 评论 -
数据分析基础之《numpy(2)—ndarray属性》
一、ndarray的属性。原创 2023-12-10 17:06:38 · 245 阅读 · 0 评论 -
数据分析基础之《numpy(1)—介绍》
numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用numpy比直接使用python要简洁的多。1、numpy提供了一个n维数组类型ndarry,它描述了相同类型的items的集合。numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。2、numpy是一个开源的python科学计算库,用于快速处理任意维度的数组。num - numerical 数值化的。d - dimension 维度。二、ndarray介绍。array - 数组。原创 2023-12-08 17:20:38 · 234 阅读 · 0 评论 -
数据分析基础之《matplotlib(6)—饼图》
饼图广泛的应用在各个领域,用于表示不同分类的占比情况,通过弧度大小来对比各种分类。饼图通过将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个区块(圆弧)表示该分类占总体的比例大小,所有区块(圆弧)的加和等于100%原创 2023-12-08 14:41:07 · 399 阅读 · 0 评论 -
数据分析基础之《matplotlib(5)—直方图》
直方图,形状类似柱状图却有着与柱状图完全不同的含义。直方图牵涉统计学的概念,首先要对数据进行分组,然后统计每个分组内数据元的数量。在坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高,代表对应的频数,称这样的统计图为频数分布直方图。(2)身高在160.5cm以上的同学有多少人?(1)身高在哪一组的同学最多?原创 2023-12-08 09:58:07 · 1241 阅读 · 0 评论 -
数据分析基础之《matplotlib(4)—柱状图》
2、需求:对比每部电影的票房收入。原创 2023-12-07 16:37:36 · 355 阅读 · 0 评论 -
数据分析基础之《matplotlib(3)—散点图》
1、matplotlib能够绘制折线图、散点图、柱状图、直方图、饼图。我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据。说明:以折线的上升或下降来表示统计数量的增减变化的统计图。特点:能够显示数据的变化趋势,反映事物的变化情况(变化)一、常见图形种类及意义。原创 2023-12-07 13:59:31 · 360 阅读 · 0 评论 -
数据分析基础之《matplotlib(2)—折线图》
matplotlib.pyplot包含了一系列类似于matlab的画图函数。它的函数作用于当前图形(figure)的当前坐标系(axes)展示城市一周的天气,比如从星期一到星期日的天气温度如下。1、matplotlib.pyplot模块。一、折线图绘制与保存图片。2、折线图绘制与显示。原创 2023-11-23 15:01:09 · 859 阅读 · 0 评论 -
数据分析基础之《matplotlib(1)—介绍》
1、数据可视化是在整个数据分析的关键辅助工具,可以清晰的理解数据,从而调整我们的分析方法。1、专门用于开发2D图表(包括3D图表)(1)能将数据进行可视化,更直观的呈现。二、为什么要学习matplotlib。3、以渐进、交互方式实现数据可视化。(2)使数据更加客观、更具说服力。一、什么是matplotlib。mat:matrix(矩阵)2、数字展示和图形展示对比。2、使用起来及其简单。原创 2023-11-22 15:24:36 · 976 阅读 · 0 评论 -
数据分析基础之《jupyter notebook工具》
(1)jupyter notebook原名ipython notebook,是ipython的加强网页版,一个开源web应用程序。(4).ipynb文件格式是用于计算型叙述的JSON文档格式的正式规范。(2)名字源自julia、python和R(数据科学的三种开源语言)(3)是一款程序员和科学工作者的编程、文档、笔记、展示软件。numpy:进行科学计算的基础软件包(数组、矩阵)1、什么是jupyter notebook。三、jupyter notebook使用。notebook:数据分析与展示的平台。原创 2023-11-20 15:40:32 · 1003 阅读 · 0 评论