基础:基于物品的推荐系统 基于物品的推荐系统 基于物品的推荐系统(点击打开)
一、基于内容的推荐系统
1、余弦相似度(见基础)
2、基于用户的推荐系统:
思想:给用户推荐和他兴趣相似的其他用户喜欢的商品
步骤:
二、输入
将ItemProfile.txt、ItemUser.txt文件上传到Hadoop HDFS /input目录下
hadoop fs -put ItemProfile.txt /input
(如果没有该目录则创建之)
hadoop fs -mkdir /input
ItemProfile.txt
I1 1_1,4_1,5_1,7_1
I2 2_1,4_1,7_1,9_1
I3 2_1,3_1,6_1,8_1,9_1
I4 1_1,3_1,4_1,5_1
I5 2_1,4_1,7_1,8_1
ItemUser.txt
U1 I1_1,I5_5
U2 I2_4,I4_1
U3 I2_5,I3_3,I5_1
三、实现
step1:评分矩阵ItemUser×物品特征矩阵ItemProfile=用户特征矩阵UserProfile 之 转置 物品特征矩阵ItemProfile
package hadoop4;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/**
* 矩阵相乘:
* 1、转置评分矩阵
* 2、相似度矩阵 与 (转置评分矩阵)
* 这里进行1:转置
*
* input:
* I1 1_1,4_1,5_1,7_1
I2 2_1,4_1,7_1,9_1
I3 2_1,3_1,6_1,8_1,9_1
I4 1_1,3_1,4_1,5_1
I5 2_1,4_1,7_1,8_1
output:
1 I1_1,I4_1
2 I3_1,I2_1,I5_1
3 I4_1,I3_1
4 I5_1,I1_1,I2_1,I4_1
5 I4_1,I1_1
6 I3_1
7 I2_1,I1_1,I5_1
8 I3_1,I5_1
9 I2_1,I3_1
* @author chenjie
*
*/
public class Step1 {
public static class Mapper3 extends Mapper<LongWritable,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
//对于每一行,以第一行为例
//key : 1
//value : "1 1_0,2_3,3_-1,4_2,5_-3"
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
String[] rowAndline = value.toString().split("\t");
//rowAndline : {"1","1_0,2_3,3_-1,4_2,5_-3"}
String row = rowAndline[0];
//row "1"
String[] lines = rowAndline[1].split(",");
//rowAndline[1] : "1_0,2_3,3_-1,4_2,5_-3"
//lines : {"1_0","2_3","3_-1","4_2","5_-3"}
for(String line : lines)//对于每一列,以第一列为例,line "1_0"
{
String colunm = line.split("_")[0];
//colunm : 1
String valueStr = line.split("_")[1];
//valueStr : 0
outKey.set(colunm);
//将列作为行
outValue.set(row + "_" + valueStr);
//将行作为列
context.write(outKey, outValue);
// 产生(1,"1_0")
}
//循环结束,对于{"1_0","2_3","3_-1","4_2","5_-3"}
//产生(1,"1_0") 第一行,第一列_0 (2,"1_3") 第二行,第一列_3 (3,"1_-1") (4,"1_2")(5,"1_-3")
/*
目标转置矩阵
0 1 1 -2
3 3 1 2
-1 5 4 -1
2 -2 -1 1
-3 -1 2 2
*/
//正好对应于转置矩阵的第一列
}
/*
所有map操作产生
("1","1_0") ("2","1_3") ("3","1_-1") ("4","1_2") ("5","1_-3")
("1","2_1") ("2","2_3") ("3","2_5") ("4","2_-2") ("5","2_-1")
("1","3_0") ("2","3_1") ("3","3_4") ("4","3_-1") ("5","3_2")
("1","4_-2") ("2","4_2") ("3","4_-1") ("4","4_1") ("5","4_2")
*/
}
/*
Reduce任务,将map操作产生的所有键值对集合进行合并,生成转置矩阵的存储表示
key值相同的值会组成值的集合
如:
key:"1"时
values:{"3_0","1_0","4_-2","2_1"}
注意:这里就是为什么要进行列标号的原因,values的顺序不一定就是原来矩阵列的顺序
*/
public static class Reducer3 extends Reducer<Text,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for(Text text : values)
{
sb.append(text + ",");
}
//sb : "3_0,1_0,4_-2,2_1,"
//注意这里末尾有个逗号
String line = "";
if(sb.toString().endsWith(","))
{
line = sb.substring(0,sb.length()-1);
}
//去掉逗号
//line : "3_0,1_0,4_-2,2_1"
outKey.set(key);
outValue.set(line);
//("1","3_0,1_0,4_-2,2_1")
context.write(outKey, outValue);
}
}
private static final String INPATH = "hdfs://pc1:9000/input/ItemProfile.text";//输入文件路径
private static final String OUTPATH = "hdfs://pc1:9000/output/tuijian3_1";//输出文件路径
private static final String HDFS = "hdfs://pc1:9000";//HDFS路径
public int run() throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
//String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//String[] otherArgs = {"hdfs://pc1:9000/input/chenjie.txt","hdfs://pc1:9000/output/out4"};
String[] otherArgs = {INPATH,OUTPATH};
//这里需要配置参数即输入和输出的HDFS的文件路径
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
//conf.set("fs.defaultFS",HDFS);
// JobConf conf1 = new JobConf(WordCount.class);
Job job = new Job(conf, "step3");//Job(Configuration conf, String jobName) 设置job名称和
job.setJarByClass(Step1.class);
job.setMapperClass(Mapper3.class); //为job设置Mapper类
//job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
job.setReducerClass(Reducer3.class); //为job设置Reduce类
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class); //设置输出key的类型
job.setOutputValueClass(Text.class);// 设置输出value的类型
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类 设置输入路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类 设置输出路径
FileSystem fs = FileSystem.get(conf);
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}
return job.waitForCompletion(true) ? 1 : -1;
/*Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
Job job = Job.getInstance(conf,"step1");
job.setJarByClass(Step1.class);
job.setMapperClass(Mapper1.class);
job.setReducerClass(Reducer1.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileSystem fs = FileSystem.get(conf);
Path inPath = new Path(INPATH);
if(fs.exists(inPath))
{
//FileInputFormat.addInputPath(conf, inPath);
}
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}*/
}
public static void main(String[] args)
{
try {
new Step1().run();
} catch (ClassNotFoundException | IOException | InterruptedException e) {
e.printStackTrace();
}
}
}
step2:评分矩阵ItemUser×物品特征矩阵ItemProfile=用户特征矩阵UserProfile 之 矩阵相乘
package hadoop4;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/**
* 矩阵相乘:
* 1、转置评分矩阵
* 2、相似度矩阵 与 (转置评分矩阵)
* 这里进行2:相似度矩阵 与 (转置评分矩阵)相乘
* input:
U1 I1_1,I5_5
U2 I2_4,I4_1
U3 I2_5,I3_3,I5_1
*
* cache:
* 1 I1_1,I4_1
2 I3_1,I2_1,I5_1
3 I4_1,I3_1
4 I5_1,I1_1,I2_1,I4_1
5 I4_1,I1_1
6 I3_1
7 I2_1,I1_1,I5_1
8 I3_1,I5_1
9 I2_1,I3_1
output:
U1 1_1.00,2_5.00,4_6.00,5_1.00,7_6.00,8_5.00
U2 4_5.00,9_4.00,7_4.00,5_1.00,3_1.00,2_4.00,1_1.00
U3 9_8.00,3_3.00,4_6.00,6_3.00,2_9.00,7_6.00,8_4.00
* @author chenjie
*
*/
public class Step2 {
public static class Mapper4 extends Mapper<LongWritable,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
private List<String> cacheList = new ArrayList<String>();
private DecimalFormat df = new DecimalFormat("0.00");
/***
* 将保存右侧矩阵的文件缓存到内存中,每一行为一个字符串,是所有行构成list
*/
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
FileReader fr = new FileReader("myfile2");
BufferedReader br = new BufferedReader(fr);
String line = null;
while((line = br.readLine()) != null)
{
cacheList.add(line);
System.out.println("----------------------cache line :" + line);
}
fr.close();
br.close();
}
/* 左侧矩阵逻辑形式
* 1 2 -2 0
* 3 3 4 -3
* -2 0 2 3
* 5 3 -1 2
* -4 2 0 2
* 左侧矩阵物理形式
* 1 1_1,2_2,3_-2,4_0
* 2 1_3,2_3,3_4,4_-3
* 3 1_-2,2_0,3_2,4_3
* 4 1_5,2_3,3_-1,4_2
* 5 1_-4,2_2,3_0,4_2
*
* 右侧矩阵(已转置)物理形式
* 1 3_0,1_0,4_-2,2_1
2 3_1,4_2,2_3,1_3
3 4_-1,1_-1,3_4,2_5
4 1_2,3_-1,4_1,2_-2
5 4_2,3_2,1_-3,2_-1
key: "1"
value: "1 1_1,2_2,3_-2,4_0"
* */
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
System.out.println("-------------------map,key=" + key + "value=" + value);
String[] rowAndline = value.toString().split("\t");
//获得行号
//rowAndline : {"1","1_1,2_2,3_-2,4_0"}
String row_matrix1 = rowAndline[0];
//row_matrix1 :"1"
String[] column_value_array_matrix1 = rowAndline[1].split(",");
//获得各列
//rowAndline[1] : "1_1,2_2,3_-2,4_0"
//column_value_array_matrix1 : {"1_1","2_2","3_-2","4_0"}
for(String line : cacheList)// 以line:"3 4_-1,1_-1,3_4,2_5"为例
{
String[] rowAndline2 = line.toString().split("\t");
//rowAndline2 : {"3","4_-1,1_-1,3_4,2_5"}
String row_matrix2 = rowAndline2[0];
//获得转置矩阵line行的行号(原右矩阵的列号)
String[] column_value_array_matrix2 = rowAndline2[1].split(",");
//rowAndline2[1] : "4_-1,1_-1,3_4,2_5"
//column_value_array_matrix2 : {"4_-1","1,-1","3_4","2_5"}
double result = 0;
//保存成绩累加结果
for(String column_value_matrix1 : column_value_array_matrix1)//对于左侧矩阵line行的每一列(分量) "1_1","2_2","3_-2","4_0"
{
String column_maxtrix1 = column_value_matrix1.split("_")[0];
//获得列号
String value_matrix1 = column_value_matrix1.split("_")[1];
//获得该列的值
for(String column_value_matrix2 : column_value_array_matrix2)//对于右侧矩阵的line行的每一列(分量) "4_-1","1,-1","3_4","2_5"
{
String column_maxtrix2 = column_value_matrix2.split("_")[0];
//获得列号
String value_matrix2 = column_value_matrix2.split("_")[1];
//获得该列的值
if(column_maxtrix2.equals(column_maxtrix1))//这里也体现了为什么要标明列号,只有列号明确且相等,才证明是同一个位置的分量
{
result += Double.valueOf(value_matrix1) * Double.valueOf(value_matrix2);
//result += 1 * (-1)
//result += 2 * 5
//result += -2 * 4
//result += 0 * (-1)
}
}
}
if(result == 0)
continue;
outKey.set(row_matrix1);//输出的key值设置为左侧矩阵的行号
outValue.set(row_matrix2 + "_" +df.format(result));//输出的value值设置为右侧转置矩阵的行号(实际矩阵的列号)_该位置的值
context.write(outKey, outValue);
//("1","3_1")
}
//("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
//("2","1_9")...
//....
}
}
public static class Reducer4 extends Reducer<Text,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
/**
* 将map产生的key-value对进行组合,拼接成结果矩阵的物理形式
* ("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
* ("2","1_9")...
* ...
* 对于key值相同的元素("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
* 会将其组合
* key : "1"
* values : {"2_7","3_1","2_4","4_0","5_9"}
*
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for(Text text : values)
{
sb.append(text + ",");
}
// sb : "2_7,3_1,2_4,4_0,5_9,"
String line = "";
if(sb.toString().endsWith(","))
{
line = sb.substring(0,sb.length()-1);
}
//line :"2_7,3_1,2_4,4_0,5_9"
outKey.set(key);
outValue.set(line);
context.write(outKey, outValue);
// ("1","2_7,3_1,2_4,4_0,5_9")
}
}
private static final String INPATH = "hdfs://pc1:9000/input/ItemUser.txt";
private static final String OUTPATH = "hdfs://pc1:9000/output/tuijian3_2";
private static final String CACHE = "hdfs://pc1:9000/output/tuijian3_1/part-r-00000";
private static final String HDFS = "hdfs://pc1:9000";
public int run() throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
//String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//String[] otherArgs = {"hdfs://pc1:9000/input/chenjie.txt","hdfs://pc1:9000/output/out4"};
String[] otherArgs = {INPATH,OUTPATH};
//这里需要配置参数即输入和输出的HDFS的文件路径
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
//conf.set("fs.defaultFS",HDFS);
// JobConf conf1 = new JobConf(WordCount.class);
Job job = new Job(conf, "step2");//Job(Configuration conf, String jobName) 设置job名称和
job.setJarByClass(Step2.class);
job.setMapperClass(Mapper4.class); //为job设置Mapper类
//job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
job.setReducerClass(Reducer4.class); //为job设置Reduce类
job.addCacheArchive(new URI(CACHE + "#myfile2"));
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class); //设置输出key的类型
job.setOutputValueClass(Text.class);// 设置输出value的类型
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类 设置输入路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类 设置输出路径
FileSystem fs = FileSystem.get(conf);
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}
return job.waitForCompletion(true) ? 1 : -1;
/*Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
Job job = Job.getInstance(conf,"step1");
job.setJarByClass(Step1.class);
job.setMapperClass(Mapper1.class);
job.setReducerClass(Reducer1.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileSystem fs = FileSystem.get(conf);
Path inPath = new Path(INPATH);
if(fs.exists(inPath))
{
//FileInputFormat.addInputPath(conf, inPath);
}
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}*/
}
public static void main(String[] args)
{
try {
new Step2().run();
} catch (ClassNotFoundException | IOException | InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (URISyntaxException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
step3:对ItemProfile和UserProfile的每各一行求余弦相似度,cos(U1,I1)表示用户U1对物品I1的喜欢程度
package hadoop4;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/**
* 矩阵相乘:
* 1、转置评分矩阵
* 2、相似度矩阵 与 (转置评分矩阵)
* 这里进行2:相似度矩阵 与 (转置评分矩阵)相乘
* input:
I1 1_1,4_1,5_1,7_1
I2 2_1,4_1,7_1,9_1
I3 2_1,3_1,6_1,8_1,9_1
I4 1_1,3_1,4_1,5_1
I5 2_1,4_1,7_1,8_1
*
* cache:
* U1 1_1.00,2_5.00,4_6.00,5_1.00,7_6.00,8_5.00
U2 4_5.00,9_4.00,7_4.00,5_1.00,3_1.00,2_4.00,1_1.00
U3 9_8.00,3_3.00,4_6.00,6_3.00,2_9.00,7_6.00,8_4.00
output:
U1 I4_8.00,I3_10.00,I1_14.00,I2_17.00,I5_22.00
U2 I3_9.00,I5_13.00,I4_8.00,I2_17.00,I1_11.00
U3 I5_25.00,I4_9.00,I1_12.00,I3_27.00,I2_29.00
* @author chenjie
*
*/
public class Step3 {
public static class Mapper4 extends Mapper<LongWritable,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
private List<String> cacheList = new ArrayList<String>();
private DecimalFormat df = new DecimalFormat("0.00");
/***
* 将保存右侧矩阵的文件缓存到内存中,每一行为一个字符串,是所有行构成list
*/
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
FileReader fr = new FileReader("myfile");
BufferedReader br = new BufferedReader(fr);
String line = null;
while((line = br.readLine()) != null)
{
cacheList.add(line);
System.out.println("----------------------cache line :" + line);
}
fr.close();
br.close();
}
/* 左侧矩阵逻辑形式
* 1 2 -2 0
* 3 3 4 -3
* -2 0 2 3
* 5 3 -1 2
* -4 2 0 2
* 左侧矩阵物理形式
* 1 1_1,2_2,3_-2,4_0
* 2 1_3,2_3,3_4,4_-3
* 3 1_-2,2_0,3_2,4_3
* 4 1_5,2_3,3_-1,4_2
* 5 1_-4,2_2,3_0,4_2
*
* 右侧矩阵(已转置)物理形式
* 1 3_0,1_0,4_-2,2_1
2 3_1,4_2,2_3,1_3
3 4_-1,1_-1,3_4,2_5
4 1_2,3_-1,4_1,2_-2
5 4_2,3_2,1_-3,2_-1
key: "1"
value: "1 1_1,2_2,3_-2,4_0"
* */
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
System.out.println("-------------------map,key=" + key + "value=" + value);
String[] rowAndline = value.toString().split("\t");
//获得行号
//rowAndline : {"1","1_1,2_2,3_-2,4_0"}
String row_matrix1 = rowAndline[0];
//row_matrix1 :"1"
String[] column_value_array_matrix1 = rowAndline[1].split(",");
//获得各列
//rowAndline[1] : "1_1,2_2,3_-2,4_0"
//column_value_array_matrix1 : {"1_1","2_2","3_-2","4_0"}
for(String line : cacheList)// 以line:"3 4_-1,1_-1,3_4,2_5"为例
{
String[] rowAndline2 = line.toString().split("\t");
//rowAndline2 : {"3","4_-1,1_-1,3_4,2_5"}
String row_matrix2 = rowAndline2[0];
//获得转置矩阵line行的行号(原右矩阵的列号)
String[] column_value_array_matrix2 = rowAndline2[1].split(",");
//rowAndline2[1] : "4_-1,1_-1,3_4,2_5"
//column_value_array_matrix2 : {"4_-1","1,-1","3_4","2_5"}
double result = 0;
//保存成绩累加结果
for(String column_value_matrix1 : column_value_array_matrix1)//对于左侧矩阵line行的每一列(分量) "1_1","2_2","3_-2","4_0"
{
String column_maxtrix1 = column_value_matrix1.split("_")[0];
//获得列号
String value_matrix1 = column_value_matrix1.split("_")[1];
//获得该列的值
for(String column_value_matrix2 : column_value_array_matrix2)//对于右侧矩阵的line行的每一列(分量) "4_-1","1,-1","3_4","2_5"
{
String column_maxtrix2 = column_value_matrix2.split("_")[0];
//获得列号
String value_matrix2 = column_value_matrix2.split("_")[1];
//获得该列的值
if(column_maxtrix2.equals(column_maxtrix1))//这里也体现了为什么要标明列号,只有列号明确且相等,才证明是同一个位置的分量
{
result += Double.valueOf(value_matrix1) * Double.valueOf(value_matrix2);
//result += 1 * (-1)
//result += 2 * 5
//result += -2 * 4
//result += 0 * (-1)
}
}
}
if(result == 0)
continue;
outKey.set(row_matrix2);//输出的key值设置为左侧矩阵的行号
outValue.set(row_matrix1 + "_" +df.format(result));//输出的value值设置为右侧转置矩阵的行号(实际矩阵的列号)_该位置的值
context.write(outKey, outValue);
//("1","3_1")
}
//("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
//("2","1_9")...
//....
}
}
public static class Reducer4 extends Reducer<Text,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
/**
* 将map产生的key-value对进行组合,拼接成结果矩阵的物理形式
* ("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
* ("2","1_9")...
* ...
* 对于key值相同的元素("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
* 会将其组合
* key : "1"
* values : {"2_7","3_1","2_4","4_0","5_9"}
*
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for(Text text : values)
{
sb.append(text + ",");
}
// sb : "2_7,3_1,2_4,4_0,5_9,"
String line = "";
if(sb.toString().endsWith(","))
{
line = sb.substring(0,sb.length()-1);
}
//line :"2_7,3_1,2_4,4_0,5_9"
outKey.set(key);
outValue.set(line);
context.write(outKey, outValue);
// ("1","2_7,3_1,2_4,4_0,5_9")
}
}
private static final String INPATH = "hdfs://pc1:9000/input/ItemProfile.text";
private static final String OUTPATH = "hdfs://pc1:9000/output/tuijian3_3";
private static final String CACHE = "hdfs://pc1:9000/output/tuijian3_2/part-r-00000";
private static final String HDFS = "hdfs://pc1:9000";
public int run() throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
//String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//String[] otherArgs = {"hdfs://pc1:9000/input/chenjie.txt","hdfs://pc1:9000/output/out4"};
String[] otherArgs = {INPATH,OUTPATH};
//这里需要配置参数即输入和输出的HDFS的文件路径
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
//conf.set("fs.defaultFS",HDFS);
// JobConf conf1 = new JobConf(WordCount.class);
Job job = new Job(conf, "step3");//Job(Configuration conf, String jobName) 设置job名称和
job.setJarByClass(Step3.class);
job.setMapperClass(Mapper4.class); //为job设置Mapper类
//job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
job.setReducerClass(Reducer4.class); //为job设置Reduce类
job.addCacheArchive(new URI(CACHE + "#myfile"));
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class); //设置输出key的类型
job.setOutputValueClass(Text.class);// 设置输出value的类型
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类 设置输入路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类 设置输出路径
FileSystem fs = FileSystem.get(conf);
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}
return job.waitForCompletion(true) ? 1 : -1;
/*Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
Job job = Job.getInstance(conf,"step1");
job.setJarByClass(Step1.class);
job.setMapperClass(Mapper1.class);
job.setReducerClass(Reducer1.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileSystem fs = FileSystem.get(conf);
Path inPath = new Path(INPATH);
if(fs.exists(inPath))
{
//FileInputFormat.addInputPath(conf, inPath);
}
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}*/
}
public static void main(String[] args)
{
try {
new Step3().run();
} catch (ClassNotFoundException | IOException | InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (URISyntaxException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
step4:删除推荐矩阵中用户已经有过操作的物品
package hadoop4;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Reducer.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/***
* 去掉推荐列表中,用户已经操作过的商品,例如用户A已经购买过iphone7,则将iphone7从推荐列表中删除
* input:相似度矩阵
* U1 I4_8.00,I3_10.00,I1_14.00,I2_17.00,I5_22.00
U2 I3_9.00,I5_13.00,I4_8.00,I2_17.00,I1_11.00
U3 I5_25.00,I4_9.00,I1_12.00,I3_27.00,I2_29.00
* cache:操作记录
* U1 I1_1,I5_5
U2 I2_4,I4_1
U3 I2_5,I3_3,I5_1
map:
例如
1商品的推荐列表:1 A_9.87,B_2.38,C_23.90
1商品的操作记录:1 A_2,C_5
则对于1商品,由于A已经有2分,C已经右5分
应该把A和C从1的推荐列表中删除,
只保留B
而最终是要根据用户来推荐商品,于是将用户作为key,物品和推荐度作为value返回
(B,1_2.38)
reduce:
将同一用户推荐的商品合并输出
output:
U1 I2_17.00,I3_10.00,I4_8.00
U2 I1_11.00,I5_13.00,I3_9.00
U3 I1_12.00,I4_9.00
* @author chenjie
*
*/
public class Step4 {
public static class Mapper5 extends Mapper<LongWritable,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
private List<String> cacheList = new ArrayList<String>();
private DecimalFormat df = new DecimalFormat("0.00");
/***
* 将保存右侧矩阵的文件缓存到内存中,每一行为一个字符串,是所有行构成list
*/
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
FileReader fr = new FileReader("itemUserScore5");
BufferedReader br = new BufferedReader(fr);
String line = null;
while((line = br.readLine()) != null)
{
cacheList.add(line);
System.out.println("----------------------cache line :" + line);
}
fr.close();
br.close();
}
/**
* 以
* 1商品的推荐列表:1 A_9.87,B_2.38,C_23.90
1商品的操作记录:1 A_2,C_5
为例
*/
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException
{
System.out.println("-------------------map,key=" + key + "value=" + value);
String item_matrix1 = value.toString().split("\t")[0];
//推荐列表商品号 1
String[] user_score_array_matrix1 = value.toString().split("\t")[1].split(",");
//推荐列表 A_9.87,B_2.38,C_23.90
for(String line : cacheList)//商品的操作记录列表
{
String item_matrix2 = line.toString().split("\t")[0];
//操作记录商品号 1
String[] user_score_array_matrix2 = line.toString().split("\t")[1].split(",");
//操作记录 A_2,C_5
if(item_matrix1.equals(item_matrix2))//如果推荐列表商品号==操作记录商品号,证明是同一商品,才能操作
{
for(String user_score : user_score_array_matrix1)//对于推荐列表中每一个用户 A_9.87,B_2.38,C_23.90
{
boolean flag = false;//默认操作过标志位
String user_matrix1 = user_score.split("_")[0];
//用户ID
String score_matrix1 = user_score.split("_")[1];
//推荐度
for(String user_score2 : user_score_array_matrix2)//对于操作记录中的每一条记录 A_2,C_5
{
String user_matrix2 = user_score2.split("_")[0];
//用户ID
if(user_matrix1.equals(user_matrix2))//如果两个ID相等 如A_9.87 和A_2 则证明用户A操作过该商品
{
flag = true;
}
}
if(flag == false)//如果用户A没有操作过该物品
{
outKey.set(item_matrix1);//将用户ID作为Key
outValue.set(user_matrix1 + "_" +score_matrix1 );//将商品ID_推荐度作为value
context.write(outKey, outValue);//写入结果集
}
}
}
}
}
}
public static class Reducer5 extends Reducer<Text,Text,Text,Text>
{
private Text outKey = new Text();
private Text outValue = new Text();
/**
* 将map产生的key-value对进行组合,拼接成结果矩阵的物理形式
* ("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
* ("2","1_9")...
* ...
* 对于key值相同的元素("1","2_7")("1,"3_1")("1","2_4")("1","4_0")("1","5_9")
* 会将其组合
* key : "1"
* values : {"2_7","3_1","2_4","4_0","5_9"}
*
*/
@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for(Text text : values)
{
sb.append(text + ",");
}
// sb : "2_7,3_1,2_4,4_0,5_9,"
String line = "";
if(sb.toString().endsWith(","))
{
line = sb.substring(0,sb.length()-1);
}
//line :"2_7,3_1,2_4,4_0,5_9"
outKey.set(key);
outValue.set(line);
context.write(outKey, outValue);
// ("1","2_7,3_1,2_4,4_0,5_9")
}
}
private static final String INPATH = "hdfs://pc1:9000/output/tuijian3_3/part-r-00000";
private static final String OUTPATH = "hdfs://pc1:9000/output/tuijian3_4";
private static final String CACHE = "hdfs://pc1:9000/input/ItemUser.txt";
private static final String HDFS = "hdfs://pc1:9000";
public int run() throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
//String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//String[] otherArgs = {"hdfs://pc1:9000/input/chenjie.txt","hdfs://pc1:9000/output/out4"};
String[] otherArgs = {INPATH,OUTPATH};
//这里需要配置参数即输入和输出的HDFS的文件路径
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
//conf.set("fs.defaultFS",HDFS);
// JobConf conf1 = new JobConf(WordCount.class);
Job job = new Job(conf, "step4");//Job(Configuration conf, String jobName) 设置job名称和
job.setJarByClass(Step4.class);
job.setMapperClass(Mapper5.class); //为job设置Mapper类
//job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
job.setReducerClass(Reducer5.class); //为job设置Reduce类
job.addCacheArchive(new URI(CACHE + "#itemUserScore5"));
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class); //设置输出key的类型
job.setOutputValueClass(Text.class);// 设置输出value的类型
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类 设置输入路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类 设置输出路径
FileSystem fs = FileSystem.get(conf);
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}
return job.waitForCompletion(true) ? 1 : -1;
/*Configuration conf = new Configuration();
conf.set("fs.defaultFS",HDFS);
Job job = Job.getInstance(conf,"step1");
job.setJarByClass(Step1.class);
job.setMapperClass(Mapper1.class);
job.setReducerClass(Reducer1.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileSystem fs = FileSystem.get(conf);
Path inPath = new Path(INPATH);
if(fs.exists(inPath))
{
//FileInputFormat.addInputPath(conf, inPath);
}
Path outPath = new Path(OUTPATH);
if(fs.exists(outPath))
{
fs.delete(outPath, true);
}*/
}
public static void main(String[] args)
{
try {
new Step4().run();
} catch (ClassNotFoundException | IOException | InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (URISyntaxException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
5、调度程序
package hadoop4;
import java.io.IOException;
import java.net.URISyntaxException;
public class JobRunner {
public static void main(String[] args) {
int result1 = -1;
int result2 = -1;
int result3 = -1;
int result4 = -1;
int result5 = -1;
try {
result1 = new Step1().run();
}
catch (Exception e) {
result1 = -1;
}
if(result1 == 1)
{
System.out.println("Step1 run success");
try {
result2 = new Step2().run();
} catch (ClassNotFoundException | IOException | InterruptedException | URISyntaxException e) {
result2 = -1;
}
}
else
{
System.out.println("Step1 run failed");
}
if(result2 == 1)
{
System.out.println("Step2 run success");
try {
result3 = new Step1().run();
} catch (Exception e) {
result3 = -1;
}
}
else
{
System.out.println("Step2 run failed");
}
if(result3 == 1)
{
System.out.println("Step3 run success");
try {
result4 = new Step2().run();
} catch (Exception e) {
result4 = -1;
}
}
else
{
System.out.println("Step3 run failed");
}
if(result4 == 1)
{
System.out.println("Step4 run success");
try {
result5 = new Step4().run();
} catch (Exception e) {
result5 = -1;
}
}
else
{
System.out.println("Step4 run failed");
}
if(result5 == 1)
{
System.out.println("Step5 run success");
System.out.println("job finished ");
}
else
{
System.out.println("Step5 run failed");
}
}
}
四、运行截图