《信息论,推理和学习算法》学习笔记——概率,前向概率,反向概率

本文是《信息论,推理和学习算法》的学习笔记,探讨了概率的基本概念,以及在信息处理中的两种关键概率计算:前向概率和反向概率。前向概率关注在给定模型下数据发生的概率,例如多次投掷硬币或从有不同比例黑球的罐子中取球。反向概率则是在已知观测结果的情况下,推断未观测变量的条件概率,如比尔试图确定弗雷德选择的罐子。通过举例和贝叶斯定理的应用,阐述了两者的区别和计算方法。
摘要由CSDN通过智能技术生成

参考《信息论,推理和学习算法》


基本概念:

概率:随机试验中结果出现的频度;

置信度:个体对事件的猜测概率;注意此时该事件并无概率,只是对事件进行判断的主题根据现有证据,对事件属于某个分区的猜测;

概率法则保证:如果两个人做同样的假设,得到相同的数据,那么他们就会得到相同的结论。更广义地使用概率来量化置信则被称为贝叶斯观点,也被称为概率的主观解释,因为概率取决于假设;

前向概率

前向概率涉及发生模型,该模型描述在一定假设下产生一些数据的过程,任务是计算取决于数据的某个数量的概率分布或期望值;该模型常见于一般的概率模型,n次掷硬币,从罐子里取小球问题,均属于前向模型;下面以书2.4为例:

描述数据生成过程:从装有K个球的罐子中,其中B个黑球,K-B个白球,随机从中选取一个球,再放回去,如此重复N次

任务:计算取出黑球次数n的概率分布

如题,概率分布为:伯努利分布

反向概率

反向概率也涉及一个过程的发生模型,但是不用计算该过程产生的某个量的概率分布,而是计算在给定观察变量的前提下,过程中一个或多个未观察变量的条件概率。

以下例子为分析:

例2.6 共有11个罐子,标记为u属于{0, 1, 2, ..., 10}&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值