1.
算法如下:根据快速排序划分的思想
(1) 递归对所有数据分成[a,b)b(b,d]两个区间,(b,d]区间内的数都是大于[a,b)区间内的数
(2) 对(b,d]重复(1)操作,直到最右边的区间个数小于100个。注意[a,b)区间不用划分
(3) 返回上一个区间,并返回此区间的数字数目。接着方法仍然是对上一区间的左边进行划分,分为[a2,b2)b2(b2,d2]两个区间,取(b2,d2]区间。如果个数不够,继续(3)操作,如果个数超过100的就重复1操作,直到最后右边只有100个数为止。
2.先取出前100个数,维护一个100个数的最小堆,遍历一遍剩余的元素,在此过程中维护堆就可以了。具体步骤如下:
step1:取前m个元素(例如m=100),建立一个小顶堆。保持一个小顶堆得性质的步骤,运行时间为O(lgm);建立一个小顶堆运行时间为m*O(lgm)=O(m lgm);
step2:顺序读取后续元素,直到结束。每次读取一个元素,如果该元素比堆顶元素小,直接丢弃
如果大于堆顶元素,则用该元素替换堆顶元素,然后保持最小堆性质。最坏情况是每次都需要替换掉堆顶的最小元素,因此需要维护堆的代价为(N-m)*O(lgm);
最后这个堆中的元素就是前最大的10W个。时间复杂度为O(N lgm)。
补充:这个方法的说法也可以更简化一些:
假设数组arr保存100个数字,首先取前100个数字放入数组arr,对于第101个数字k,如果k大于arr中的最小数,则用k替换最小数,对剩下的数字都进行这种处理。
3.分块查找
http://www.cnblogs.com/nzbbody/p/3576894.html 给出了另外一个思路:
将这100万的数字,平分为100份,从每一份中取出最大的100个数字;将这1万个数字组合在一起,找到最大的100个数。
如果这100万个数字跨度不大,可以用位向量结合计数器的方法。
算法如下:根据快速排序划分的思想
(1) 递归对所有数据分成[a,b)b(b,d]两个区间,(b,d]区间内的数都是大于[a,b)区间内的数
(2) 对(b,d]重复(1)操作,直到最右边的区间个数小于100个。注意[a,b)区间不用划分
(3) 返回上一个区间,并返回此区间的数字数目。接着方法仍然是对上一区间的左边进行划分,分为[a2,b2)b2(b2,d2]两个区间,取(b2,d2]区间。如果个数不够,继续(3)操作,如果个数超过100的就重复1操作,直到最后右边只有100个数为止。
2.先取出前100个数,维护一个100个数的最小堆,遍历一遍剩余的元素,在此过程中维护堆就可以了。具体步骤如下:
step1:取前m个元素(例如m=100),建立一个小顶堆。保持一个小顶堆得性质的步骤,运行时间为O(lgm);建立一个小顶堆运行时间为m*O(lgm)=O(m lgm);
step2:顺序读取后续元素,直到结束。每次读取一个元素,如果该元素比堆顶元素小,直接丢弃
如果大于堆顶元素,则用该元素替换堆顶元素,然后保持最小堆性质。最坏情况是每次都需要替换掉堆顶的最小元素,因此需要维护堆的代价为(N-m)*O(lgm);
最后这个堆中的元素就是前最大的10W个。时间复杂度为O(N lgm)。
补充:这个方法的说法也可以更简化一些:
假设数组arr保存100个数字,首先取前100个数字放入数组arr,对于第101个数字k,如果k大于arr中的最小数,则用k替换最小数,对剩下的数字都进行这种处理。
3.分块查找
先把100w个数分成100份,每份1w个数。先分别找出每1w个数里面的最大的数,然后比较。找出100个最大的数中的最大的数和最小的数,取最大数的这组的第二大的数,与最小的数比较。。。。
http://www.cnblogs.com/nzbbody/p/3576894.html 给出了另外一个思路:
将这100万的数字,平分为100份,从每一份中取出最大的100个数字;将这1万个数字组合在一起,找到最大的100个数。
如果这100万个数字跨度不大,可以用位向量结合计数器的方法。