/*
* Copyright (c)2015,烟台大学计算机与控制工程学院
* All rights reserved.
* 文件名称:项目1-3.cpp
* 作者:陈胜男
* 完成日期:2015年12月10日
* 版 本 号:v1.0
* 问题描述:验证二叉排序树相关算法
* 输入描述:无
* 程序输出:测试数据
*/
运行程序如下:
<pre class="cpp" name="code">#include <stdio.h>
#include <malloc.h>
typedef int KeyType;
typedef char InfoType[10];
typedef struct node //记录类型
{
KeyType key; //关键字项
InfoType data; //其他数据域
struct node *lchild,*rchild; //左右孩子指针
} BSTNode;
//在p所指向的二叉排序树中,插入值为k的节点
int InsertBST(BSTNode *&p,KeyType k)
{
if (p==NULL) //原树为空, 新插入的记录为根结点
{
p=(BSTNode *)malloc(sizeof(BSTNode));
p->key=k;
p->lchild=p->rchild=NULL;
return 1;
}
else if (k==p->key) //树中存在相同关键字的结点,返回0
return 0;
else if (k<p->key)
return InsertBST(p->lchild,k); //插入到*p的左子树中
else
return InsertBST(p->rchild,k); //插入到*p的右子树中
}
//由有n个元素的数组A,创建一个二叉排序树
BSTNode *CreateBST(KeyType A[],int n) //返回BST树根结点指针
{
BSTNode *bt=NULL; //初始时bt为空树
int i=0;
while (i<n)
{
InsertBST(bt,A[i]); //将关键字A[i]插入二叉排序树T中
i++;
}
return bt; //返回建立的二叉排序树的根指针
}
//输出一棵排序二叉树
void DispBST(BSTNode *bt)
{
if (bt!=NULL)
{
printf("%d",bt->key);
if (bt->lchild!=NULL || bt->rchild!=NULL)
{
printf("("); //有孩子结点时才输出(
DispBST(bt->lchild); //递归处理左子树
if (bt->rchild!=NULL) printf(","); //有右孩子结点时才输出,
DispBST(bt->rchild); //递归处理右子树
printf(")"); //有孩子结点时才输出)
}
}
}
//在bt指向的节点为根的排序二叉树中,查找值为k的节点。找不到返回NULL
BSTNode *SearchBST(BSTNode *bt,KeyType k)
{
if (bt==NULL || bt->key==k) //递归终结条件
return bt;
if (k<bt->key)
return SearchBST(bt->lchild,k); //在左子树中递归查找
else
return SearchBST(bt->rchild,k); //在右子树中递归查找
}
//二叉排序树中查找的非递归算法
BSTNode *SearchBST1(BSTNode *bt,KeyType k)
{
while (bt!=NULL)
{
if (k==bt->key)
return bt;
else if (k<bt->key)
bt=bt->lchild;
else
bt=bt->rchild;
}
return NULL;
}
void Delete1(BSTNode *p,BSTNode *&r) //当被删*p结点有左右子树时的删除过程
{
BSTNode *q;
if (r->rchild!=NULL)
Delete1(p,r->rchild); //递归找最右下结点
else //找到了最右下结点*r
{
p->key=r->key; //将*r的关键字值赋给*p
q=r;
r=r->lchild; //直接将其左子树的根结点放在被删结点的位置上
free(q); //释放原*r的空间
}
}
void Delete(BSTNode *&p) //从二叉排序树中删除*p结点
{
BSTNode *q;
if (p->rchild==NULL) //*p结点没有右子树的情况
{
q=p;
p=p->lchild; //直接将其右子树的根结点放在被删结点的位置上
free(q);
}
else if (p->lchild==NULL) //*p结点没有左子树的情况
{
q=p;
p=p->rchild; //将*p结点的右子树作为双亲结点的相应子树
free(q);
}
else Delete1(p,p->lchild); //*p结点既没有左子树又没有右子树的情况
}
int DeleteBST(BSTNode *&bt, KeyType k) //在bt中删除关键字为k的结点
{
if (bt==NULL)
return 0; //空树删除失败
else
{
if (k<bt->key)
return DeleteBST(bt->lchild,k); //递归在左子树中删除为k的结点
else if (k>bt->key)
return DeleteBST(bt->rchild,k); //递归在右子树中删除为k的结点
else
{
Delete(bt); //调用Delete(bt)函数删除*bt结点
return 1;
}
}
}
int main()
{
BSTNode *bt;
int n=10,x=55,y=43,z=55;
KeyType a[]= {43,52,75,24,10,38,67,55,63,60};
bt=CreateBST(a,n);
printf("BST:");
DispBST(bt);
printf("\n\n");
if (SearchBST(bt,x)!=NULL)
{
printf("递归法找到%d结点\n",x);
printf("\n");
}
else
{
printf("未找到%d结点\n",x);
printf("\n");
}
if (SearchBST1(bt,x)!=NULL)
{
printf("非递归法找到%d结点\n",x);
printf("\n");
}
else
{
printf("未找到%d结点\n",x);
printf("\n");
}
printf("删除%d结点\n",y);
DeleteBST(bt,y);
DispBST(bt);
printf("\n\n");
printf("删除%d结点\n",z);
DeleteBST(bt,z);
DispBST(bt);
printf("\n");
return 0;
}
运行结果如下: