1、二叉排序树(Binary Sort Tree)性质:
或是一颗空树,或是具有如下性质的二叉树:
(1) 若它的左子树不空,则 左子树 上所有结点的值 均小于 它的根结点的值;
(2) 若它的右子树不空,则 右子树 上所有结点的值 均大于 它的根结点的值;
(3) 它的 左、右子树又分别为二叉排序树 。
重要性质:
1、二叉排序树的中序遍历输出一定是一个单调递增的序列。
2、二叉排序树查找指定数值相当于是一个二分查找。
2、二叉排序树举例:
下图中的这颗二叉树就是一颗典型的二叉排序树:
二叉排序树既然是名字当中带有 排序 二字,这就是它相对于普通二叉树的优势所在。
二叉排序树的每个节点上下边界如下图所示,构建、插入均是通过该边界条件判断插入位置:
3、二叉排序树构建、插入规则举例:
假设我们初始时有如下 无序序列:
第一步:插入 8 作为根结点。
第二步:插入 3 ,与根结点 8 进行比较,发现比8小,且根结点没有左孩子,则将 3 插入到 8 的左孩子。
第三步:插入10,首先与根结点比较,发现比 8 大,则要将 10 插入根结点的右子树;根结点 8 的右子树为空,则将 10 作为 8 的右孩子。
第四步:插入 1,首先与根结点比较,比根结点小,则应插入根结点的左子树。再与根结点的左孩子 3 比较,发现比 3 还小,则应插入 3 的左孩子。
第五步:插入 6,先与根结点8比较,小于 8,向左走;再与 3 比较,大于 3,向有走,没有结点,则将6 作为3的右孩子。