30、探索RDF数据:VOYAGE与LDO工具解析

探索RDF数据:VOYAGE与LDO工具解析

1. VOYAGE:开放RDF数据集词汇使用集合

VOYAGE是一个来自各种开放RDF数据集的大型词汇使用集合,重点关注实体描述中术语共现的模式。通过对开放数据发布平台(ODPs)上注册的RDF数据集进行分析,VOYAGE提供了词汇、术语的使用情况及其共现模式提取信息,为语义网和开放数据社区带来了新的发现。
- 词汇聚类 :通过对词汇共现的分析,VOYAGE实现了词汇的聚类。例如,lexinfo和lemon这两个词汇在多个实体描述模式(EDPs)中共同出现,因此被聚类在一起。这种基于共现的聚类方法为传统基于主题的聚类提供了有益的补充。
- 数据分析优势 :与以往的分析不同,VOYAGE分别分析每个RDF数据集,能够更准确地刻画每个数据集中使用的词汇和EDP的多样性。而以往的分析大多将所有抓取的RDF文档作为一个整体进行处理,或者只是对RDF数据集进行相对粗粒度的分析。
- 数据来源拓展 :VOYAGE从ODPs收集RDF数据集,而以往的分析主要从网络上抓取RDF文档,并通过付费级域名(PLD)将其启发式地分组为RDF数据集。这种启发式构建的伪RDF数据集可能存在不准确的问题。VOYAGE进一步扩展了范围,还抓取了许多其他ODPs中注册的RDF数据集,并对LOD云内外的RDF数据集进行了比较分析,揭示了它们之间的巨大差异。

文件名称 包含信息
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值