AI的三大定律和三大趋势@TOC
1 计算的等效性:复杂系统计算与人类思考无异
当计算的复杂度达到一定的程度(参数分类和选项),AI计算的效果基本可以等价于人类的思考。
一般的逻辑计算的复杂度是确定的,计算量和计算结果的变化是有限的。但由于逻辑计算对外部世界进行了非常深度的简化,因此无论多么复杂的计算只要是逻辑计算都可以利用现代的计算技术很快解决,比如解决复杂的排班/路径选择问题等,只要规则确定了,规则引擎系统就可以很快的解决。
当影响计算结果参数(选项)足够多,计算结果所呈现出来的范围(可能性)变得足够大的时候,这种计算就被称为“复杂系统计算”,比如识别一张图是不是猫,人类可以很快的判定一张图片拍的到底是不是猫,但计算机要识别就需要进行大量的训练和计算。
有经验表明,在面临大量图片识别等复杂场景的计算条件下,计算机可以接近甚至达到人类思考同等的效果。
2 计算的不可约(减)性
人类世界所有的计算都可以约减。即:所有的计算过程通过不断的拆解过程实行简化,最终可以简化到“元计算”。
“元计算”就是不可约减的计算,比如算数计算1+1/…,或者选择Y/N,逻辑计算“与|或|非”。
换句话说,我们需要掌握计算拆解的“度”。比如识别一张“猫”图篇,并不是切分到单个像素最有效,需要切分到既能保留部分特征,又能合理利用计算设施的能力就好了。
3计算的不可约(束)性
人类计算能力(或者叫技术创新)的发展是不可约束的。人类对新技术的超级适应能力可以说是近乎无限的,每一项新的技术创新在发布都会带来人类社会的进步,而如汽车促进了人类交通能力发展,网络拉近了人与人的距离等。但是技术创新并不是线性和连续的,蒸汽机在英国,核反应堆在美国,从AT&T、施乐、HP、微软、IBM到AWS,都能在一段时间内主导技术创新的路径,10年前大家都以为掌握大量知识产权的大公司将掌控人类未来的技术发展,但是现在全球都认为开源社区是未来技术发展的核心力量。下一代的技术创新总是可能发生在世界的另一个地方/群体之中,因此计算技术的发展是不受个人意志控制的,不受人群和地域的限制,是不可约束的。
结论
因此,AI的发展具有鲜明的时代特征,这个特征将体现在:
1.AI的开源化
从全球各大企业发展AI的战略上看,facebook、Google、IBM等头部企业均以AI开源为基本方针,所有的代码、配置和运行时均通过开源社区以开源软件的形式提供,这样不仅可以发挥本企业内的人才、技术和资源优势,同时也能够借用到全球化的人类知识和科学家技能,让AI的成果落地更快,效果更好,单个公司主导的非开源AI模型短期内可以实现垄断收益,但长期并不被全球企业和个人看好。因此:
AI开源化趋势不可阻挡。
2.AI的标准化
现如今正处在AI模型跑马圈地的时代,各大机构和组织各显神通,新的模型和工具层出不穷,大家都想在AI大潮中分一杯羹,而且很多都想长期的分润,但是我们看到,AI的用户也十分的清醒,大家并不想过多的被单一的硬件厂商/软件平台/AI模型锁定,更多的企业期待的是通过技术手段让AI在内部落地以满足数据安全管理的要求,并且实现一定程度上AI算力共享,降低AI的入门门槛,因此,AI算力所涉及的API服务、模型服务、工具服务等最终都需要经历一个标准化的过程,实现大家在统一、规范的沟通能力,从而达到共享算力。
3.AI的平台化
现如今,不同的厂商/组织/团队主导的AI模型和硬件设备存在很大的差异,有些差异甚至是体系结构上的差异,但是这种情况不利于最大化的发挥当今企业云(不论是共有云/私有云/混合云)的计算能力,不利于AI算力的共享(企业热切期待所采购的AI算力资源包括卡和模型能够在全企业内共享),由于k8s在云计算领域的霸主地位,不难相见有大量的团队在这个领域进行尝试,平台化的AI产品已经出现在社区中,如红帽的OpenShift AI。未来更多的企业将在一个k8s为核心的容器云平台上尝试和应用AI技术,包括硬件资源和模型),平台化的AI将会是大势所趋。