作为一名小白,最近学习了Dijkstra算法,对于最短路径的解有了一定的认识,从PTA的题目来说明Dijkstra算法
4-1 Shortest Path [3] (25分)
Write a program to not only find the weighted shortest distances, but also count the number of different minimum paths from any vertex to a given source vertex in a digraph. It is guaranteed that all the weights are positive.
Format of functions:
void ShortestDist( MGraph Graph, int dist[], int count[], Vertex S );
where MGraph
is defined as the following:
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;
The shortest distance from V
to the source S
is supposed to be stored in dist[V]
. If V
cannot be reached from S
, store -1 instead. The number of different minimum paths from V
to the source S
is supposed to be stored in count[V]
and count[S]=1
.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;
MGraph ReadG(); /* details omitted */
void ShortestDist( MGraph Graph, int dist[], int count[], Vertex S );
int main()
{
int dist[MaxVertexNum], count[MaxVertexNum];
Vertex S, V;
MGraph G = ReadG();
scanf("%d", &S);
ShortestDist( G, dist, count, S );
for ( V=0; V<G->Nv; V++ )
printf("%d ", dist[V]);
printf("\n");
for ( V=0; V<G->Nv; V++ )
printf("%d ", count[V]);
printf("\n");
return 0;
}
/* Your function will be put here */
Sample Input (for the graph shown in the figure):
8 11
0 4 5
0 7 10
1 7 30
3 0 40
3 1 20
3 2 100
3 7 70
4 7 5
6 2 1
7 5 3
7 2 50
3
Sample Output:
40 20 100 0 45 53 -1 50
1 1 4 1 1 3 0 3
void ShortestDist( MGraph Graph, int dist[], int count[], Vertex S )
{
int v, min;
int visit[MaxVertexNum]; /*判断是否经过*/
int dist1[MaxVertexNum];
for(int i=0; i<Graph->Nv; i++) /*初始化*/
{
dist[i]=Graph->G[S][i];
count[i]=0;
visit[i]=0;
}
dist[S]=0;
count[S]=1;
visit[S]=1;
for(int i=0; i<Graph->Nv-1; i++)
{
min=INFINITY;
for(int j=0; j<Graph->Nv; j++)
{
if(visit[j]==0&&dist[j]<min) /*找到未遍历且距离源点最短的点*/
{
v=j;
min=dist[j];
}
}
if(min==INFINITY)
break;
visit[v]=1;
for(int j=0; j<Graph->Nv; j++)
{
if(dist[j]>dist[v]+Graph->G[v][j]) /*更新各点距离源点的最短路径*/
{
dist[j]=dist[v]+Graph->G[v][j];
}
}
}
for(int i=0; i<Graph->Nv; i++)
{
if(dist[i]==INFINITY)
{
dist[i]=-1;
count[i]=0;
}
}
/*寻找最短路径条数*/
for(int i=0; i<Graph->Nv; i++)
{
visit[i]=0;
dist1[i]=Graph->G[S][i];
if(dist[i]==dist1[i])
count[i]=1;
}
dist1[S]=0;
count[S]=1;
visit[S]=1;
for(int i=0; i<Graph->Nv-1; i++)
{
min=INFINITY;
for(int j=0; j<Graph->Nv; j++)
{
if(visit[j]==0&&dist1[j]<min)
{
v=j;
min=dist1[j];
}
}
if(min==INFINITY)
break;
visit[v]=1;
for(int j=0; j<Graph->Nv; j++)
{
if(dist1[v]+Graph->G[v][j]==dist1[j]) /*找到等长的最短路径则在原有基础上增加*/
count[j]=count[j]+count[v];
else if(dist1[v]+Graph->G[v][j]<dist1[j]) /*如果有更小的路径则更新最小路径条数*/
{
count[j]=count[v];
dist1[j]=dist1[v]+Graph->G[v][j];
}
}
}
}