最短路径问题(2)

     承接上一篇博客,展示另一道PTA问题

   4-2 Shortest Path [4]   (25分)

Write a program to find the weighted shortest distances from any vertex to a given source vertex in a digraph. If there is more than one minimum path from v to w, a path with the fewest number of edges is chosen. It is guaranteed that all the weights are positive and such a path is unique for any vertex.

Format of functions:

void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );

where MGraph is defined as the following:

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead. If W is the vertex being visited right before V along the shortest path from S to V, then path[V]=W. If V cannot be reached from S, path[V]=-1, and we have path[S]=-1.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10  /* maximum number of vertices */
typedef int Vertex;      /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

MGraph ReadG(); /* details omitted */

void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );

int main()
{
    int dist[MaxVertexNum], path[MaxVertexNum];
    Vertex S, V;
    MGraph G = ReadG();

    scanf("%d", &S);
    ShortestDist( G, dist, path, S );

    for ( V=0; V<G->Nv; V++ )
        printf("%d ", dist[V]);
    printf("\n");
    for ( V=0; V<G->Nv; V++ )
        printf("%d ", path[V]);
    printf("\n");

    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

8 11
0 4 5
0 7 10
1 7 40
3 0 40
3 1 20
3 2 100
3 7 70
4 7 5
6 2 1
7 5 3
7 2 50
3

Sample Output:

40 20 100 0 45 53 -1 50 
3 3 3 -1 0 7 -1 0
void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S )
{
	int visit[MaxVertexNum];
	int v,min;
	for(int i=0; i<Graph->Nv; i++)
	{
		dist[i]=INFINITY;
		path[i]=S;
		visit[i]=0;
	}
	dist[S]=0;
	path[S]=-1;
	visit[S]=1;
	for(int i=0; i<Graph->Nv-1; i++)
	{
		min=INFINITY;
		for(int j=0; j<Graph->Nv; j++)
		{
			if(visit[j]==0&&Graph->G[S][j]<min)
			{
				v=j;
				min=Graph->G[S][v];
			}
		}
		if(min==INFINITY)
		break;
		visit[v]=1;
		dist[v]=min;
		for(int j=0; j<Graph->Nv; j++)
		{
			if(Graph->G[S][j]>Graph->G[S][v]+Graph->G[v][j])
			{
				Graph->G[S][j]=Graph->G[S][v]+Graph->G[v][j];
				path[j]=v;
			}
		}
	}
	for(int i=0; i<Graph->Nv; i++)
	{
		if(dist[i]==INFINITY)
		{
			dist[i]=-1;
			path[i]=-1;
		}
	}
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值