承接上一篇博客,展示另一道PTA问题
4-2 Shortest Path [4] (25分)
Write a program to find the weighted shortest distances from any vertex to a given source vertex in a digraph. If there is more than one minimum path from v to w, a path with the fewest number of edges is chosen. It is guaranteed that all the weights are positive and such a path is unique for any vertex.
Format of functions:
void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );
where MGraph
is defined as the following:
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;
The shortest distance from V
to the source S
is supposed to be stored in dist[V]
. If V
cannot be reached from S
, store -1 instead. If W
is the vertex being visited right before V
along the shortest path from S
to V
, then path[V]=W
. If V
cannot be reached from S
, path[V]=-1
, and we have path[S]=-1
.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;
MGraph ReadG(); /* details omitted */
void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S );
int main()
{
int dist[MaxVertexNum], path[MaxVertexNum];
Vertex S, V;
MGraph G = ReadG();
scanf("%d", &S);
ShortestDist( G, dist, path, S );
for ( V=0; V<G->Nv; V++ )
printf("%d ", dist[V]);
printf("\n");
for ( V=0; V<G->Nv; V++ )
printf("%d ", path[V]);
printf("\n");
return 0;
}
/* Your function will be put here */
Sample Input (for the graph shown in the figure):
8 11
0 4 5
0 7 10
1 7 40
3 0 40
3 1 20
3 2 100
3 7 70
4 7 5
6 2 1
7 5 3
7 2 50
3
Sample Output:
40 20 100 0 45 53 -1 50
3 3 3 -1 0 7 -1 0
void ShortestDist( MGraph Graph, int dist[], int path[], Vertex S ) { int visit[MaxVertexNum]; int v,min; for(int i=0; i<Graph->Nv; i++) { dist[i]=INFINITY; path[i]=S; visit[i]=0; } dist[S]=0; path[S]=-1; visit[S]=1; for(int i=0; i<Graph->Nv-1; i++) { min=INFINITY; for(int j=0; j<Graph->Nv; j++) { if(visit[j]==0&&Graph->G[S][j]<min) { v=j; min=Graph->G[S][v]; } } if(min==INFINITY) break; visit[v]=1; dist[v]=min; for(int j=0; j<Graph->Nv; j++) { if(Graph->G[S][j]>Graph->G[S][v]+Graph->G[v][j]) { Graph->G[S][j]=Graph->G[S][v]+Graph->G[v][j]; path[j]=v; } } } for(int i=0; i<Graph->Nv; i++) { if(dist[i]==INFINITY) { dist[i]=-1; path[i]=-1; } } }