数据结构和算法之:图的深度优先和广度优先遍历及其Java实现

转载自:http://www.cnblogs.com/breakpoint/p/3478149.html

图的遍历,所谓遍历,即是对结点的访问。

一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略,深度优先遍历和广度优先遍历。
 
深度优先遍历:
深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
 
具体算法表述如下:
1,访问初始结点v,并标记结点v为已访问。
2,查找结点v的第一个邻接结点w。
3,若w存在,则继续执行4,否则算法结束。
4,若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
5,查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
 
例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7
 
广度优先遍历:
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。
 
具体算法表述如下:
1,访问初始结点v并标记结点v为已访问。
2,结点v入队列
3,当队列非空时,继续执行,否则算法结束。
4,出队列,取得队头结点u。
5,查找结点u的第一个邻接结点w。
6,若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
① 若结点w尚未被访问,则访问结点w并标记为已访问。
②结点w入队列
③查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
 
如上文的图,其广度优先算法的遍历顺序为: 1->2->3->4->5->6->7->8
 
深度优先遍历和广度优先遍历的Java实现
 
前面一文 http://www.cnblogs.com/breakpoint/p/3477703.html已经实现过邻接矩阵图类AMWGraph.java,在这里还是把这个类再贴一遍好了。在原先类的基础上增加了两个遍历的函数,分别是depthFirstSearch()和broadFirstSearch()。
复制代码
  1 package com.ds;
  2 
  3 import java.util.ArrayList;
  4 import java.util.LinkedList;
  5 
  6 /**
  7  * @description 图的邻接矩阵图类
  8  * @author 等待飞鱼
  9  * @time 2013.12.17 
 10  */
 11 public class AMWGraph {
 12 
 13     private ArrayList vertexList;//存储点的链表
 14     private int[][] edges;//邻接矩阵,用来存储边
 15     private int numOfEdges;//边的数目
 16     
 17     public AMWGraph(int n)
 18     {
 19         //初始化矩阵,一维数组,和边的数目
 20         edges=new int[n][n];
 21         vertexList=new ArrayList(n);
 22         numOfEdges=0;
 23     }
 24     //得到结点的个数
 25     public int getNumOfVertex(){
 26         return vertexList.size();
 27     }
 28     //得到边的数目
 29     public int getNumOfEdges()
 30     {
 31         return numOfEdges;
 32     }
 33     //返回结点i的数据
 34     public Object getValueByIndex(int i)
 35     {
 36         return vertexList.get(i);
 37     }
 38     //返回v1,v2的权值
 39     public int getWeight(int v1,int v2)
 40     {
 41         return edges[v1][v2];
 42     }
 43     //插入结点
 44     public void insertVertex(Object vertex)
 45     {
 46         vertexList.add(vertexList.size(),vertex);
 47     }
 48     //插入结点
 49     public void insertEdge(int v1,int v2,int weight){
 50         edges[v1][v2]=weight;
 51         numOfEdges++;
 52     }
 53     //删除结点
 54     public void deleteEdge(int v1,int v2)
 55     {
 56         edges[v1][v2]=0;
 57         numOfEdges--;
 58     }
 59     //得到第一个邻接结点的下标
 60     public int getFirstNeighbor(int index)
 61     {
 62         for(int j=0;j<vertexList.size();j++)
 63         {
 64             if (edges[index][j]>0)
 65             {
 66                 return j;
 67             }
 68         }
 69         return -1;
 70     }
 71     //根据前一个邻接结点的下标来取得下一个邻接结点
 72     public int getNextNeighbor(int v1,int v2)
 73     {
 74         for (int j=v2+1;j<vertexList.size();j++)
 75         {
 76             if (edges[v1][j]>0)
 77             {
 78                 return j;
 79             }
 80         }
 81         return -1;
 82     }
 83     //私有函数,深度优先遍历
 84     private void depthFirstSearch(boolean[] isVisited,int  i)
 85     {
 86         //首先访问该结点,在控制台打印出来
 87         System.out.print(getValueByIndex(i)+"  ");
 88         //置该结点为已访问
 89         isVisited[i]=true;
 90         
 91         int w=getFirstNeighbor(i);//
 92         while (w!=-1)
 93         {
 94             if (!isVisited[w])
 95             {
 96                 depthFirstSearch(isVisited,w);
 97             }
 98             w=getNextNeighbor(i, w);
 99         }
100     }
101     //对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
102     public void depthFirstSearch()
103     {
104         boolean[] isVisited=new boolean[getNumOfVertex()];//记录结点是否已经被访问的数组
105         for (int i=0;i<getNumOfVertex();i++)
106         {
107             isVisited[i]=false;//把所有节点设置为未访问
108         }
109         for(int i=0;i<getNumOfVertex();i++)
110         {
111             //因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
112             if (!isVisited[i]){
113                 depthFirstSearch(isVisited,i);
114             }
115         }
116     }
117     //私有函数,广度优先遍历
118     private void broadFirstSearch(boolean[] isVisited,int i)
119     {
120         int u,w;
121         LinkedList queue=new LinkedList();
122         
123         //访问结点i
124         System.out.print(getValueByIndex(i)+"  ");
125         isVisited[i]=true;
126         //结点入队列
127         queue.addlast(i);
128         while (!queue.isEmpty())
129         {
130             u=((Integer)queue.removeFirst()).intValue();
131             w=getFirstNeighbor(u);
132             while(w!=-1){
133                 if(!isVisited[w]){
134                         //访问该结点
135                         System.out.print(getValueByIndex(w)+"  ");
136                         //标记已被访问
137                         isVisited[w]=true;
138                         //入队列
139                         queue.addLast(w);
140                 }
141                 //寻找下一个邻接结点
142                 w=getNextNeighbor(u, w);
143             }
144         }
145     }
146     //对外公开函数,广度优先遍历
147     public void broadFirstSearch()
148     {
149         boolean[] isVisited=new boolean[getNumOfVertex()];
150         for (int i=0;i<getNumOfVertex();i++)
151         {
152             isVisited[i]=false;
153         }
154         for(int i=0;i<getNumOfVertex();i++)
155         {
156             if(!isVisited[i])
157             {
158                 broadFirstSearch(isVisited, i);
159             }
160         }
161     }
162 }
复制代码

上面的public声明的depthFirstSearch()和broadFirstSearch()函数,是为了应对当该图是非连通图的情况,如果是非连通图,那么只通过一个结点是无法完全遍历所有结点的。

下面根据上面用来举例的图来构造测试类:

复制代码
package com.ds;

public class TestSearch {

    public static void main(String args[])
    {
        int n=8,e=9;//分别代表结点个数和边的数目
        String labels[]={"1","2","3","4","5","6","7","8"};//结点的标识
        AMWGraph graph=new AMWGraph(n);
        for(String label:labels){
            graph.insertVertex(label);//插入结点
        }
        //插入九条边
        graph.insertEdge(0, 1, 1);
        graph.insertEdge(0, 2, 1);
        graph.insertEdge(1, 3, 1);
        graph.insertEdge(1, 4, 1);
        graph.insertEdge(3, 7, 1);
        graph.insertEdge(4, 7, 1);
        graph.insertEdge(2, 5, 1);
        graph.insertEdge(2, 6, 1);
        graph.insertEdge(5, 6, 1);
        graph.insertEdge(1, 0, 1);
        graph.insertEdge(2, 0, 1);
        graph.insertEdge(3, 1, 1);
        graph.insertEdge(4, 1, 1);
        graph.insertEdge(7, 3, 1);
        graph.insertEdge(7, 4, 1);
        graph.insertEdge(4, 2, 1);
        graph.insertEdge(5, 2, 1);
        graph.insertEdge(6, 5, 1);
        
        System.out.println("深度优先搜索序列为:");
        graph.depthFirstSearch();
        System.out.println();
        System.out.println("广度优先搜索序列为:");
        graph.broadFirstSearch();
    }
}
复制代码

运行后控制台输出如下

/* * (有向)深度优先遍历算法模板 */ package dsa; public abstract class DFS extends GraphTraverse { //变量 protected static int clock = 0;//遍历过程中使用的计时钟 //构造方法 public DFS(Graph g) { super(g); } //深度优先遍历算法 protected Object traverse(Vertex v, Object info) {//从顶点v出发,做深度优先查找 if (UNDISCOVERED != v.getStatus()) return null;//跳过已访问过的顶点(针对非连通) v.setDStamp(clock++); v.setStatus(DISCOVERED); visit(v, info);//访问当前顶点 for (Iterator it = v.outEdges(); it.hasNext();) {//检查与顶点v Edge e = (Edge)it.getNext();//通过边e = (v, u) Vertex u = (Vertex)e.getVPosInV(1).getElem();//相联的每一顶点u switch (u.getStatus()) {//根据u当前的不同状态,分别做相应处理 case UNDISCOVERED ://若u尚未被发现,则 e.setType(TREE);//e被归类为“树边” traverse(u, info);//从u出发,继续做深度优先查找 break; case DISCOVERED ://若u已经被发现,但对其访问尚未结束,则 e.setType(BACKWARD);//将e归类为“后向跨边” break; default ://VISITED,即对u的访问已经结束 if (u.getDStamp() < v.getDStamp())//若相对于v,u被发现得更早,则 e.setType(CROSS);//将e归类为“横跨边” else//否则 e.setType(FORWARD);//将e归类为“前向跨边” break; } }//至此,v的所有邻居都已访问结束,故 v.setFStamp(clock++); v.setStatus(VISITED);//将v标记为VISITED return null;//然后回溯 } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值