MachineLearningOnCourse
KDLin
这个作者很懒,什么都没留下…
展开
-
Week 3 逻辑回归及处理过度拟合
Logistic Regression摘要主要是三方面的内容。**逻辑回归。**分类问题的输出其实是逻辑离散的集合,比如{是,不是},{红,黑,白},能否让算法将结果统一到0和1之间呢,按照0.5的阈值进行分类预测呢?sigmoid函数可以做这种投射。于是改变了目标函数h(x),因为目标函数不再是线性回归,所以需要新的损失函数J,方便梯度下降求导全局最小值。过拟合。增加特征这件事可以使得训...原创 2019-07-09 20:58:18 · 1188 阅读 · 0 评论 -
Week 5 神经网络原理
神经网络摘要重点在理解神经网络的原理,必须以上周神经网络模型为基础,这一周主要都是讲讲对于原理的理解。ps. 神经网络这一周的课程折腾了好几天,总算是看明白了。本周不管是原理还是练习都挺难做的,原理理解起来东西很多,这一节课讲得不够清楚,但我很理解,本身就很难讲明白。其实理解之后还是比较直观的。本来模型就挺复杂,各种下标弄到熟也麻烦。我是如此处理的,看一遍课程,做一部分练习,下标就基本熟了...原创 2019-07-13 23:00:12 · 136 阅读 · 0 评论 -
Week4 神经网络模型表示
神经网络——模型摘要本周主要介绍了神经网络的模型,只学习模型表示,需要好好熟悉才能避免后面看不懂。练习中对其加以实现。练习实现了上周未实现的多分类问题,实例为手写数字识别,效率是个问题,所以会对效率加以讨论。神经网络模型动机看起来逻辑回归已经足够解决所有分类问题。但是,像在练习中处理图像,特征真的太多,所以训练效率极其低,可以参考下一节对多分类逻辑回归效率的思考。所以神经网络分层的结构...原创 2019-07-10 16:53:51 · 159 阅读 · 0 评论 -
Week 1 & Week 2 机器学习入门,线性回归案例和matlab实现
Week 1 & Week 2摘要Week 1 和Week 2介绍了机器学习的基础知识,分类和几个基本的概念。以线性回归开篇,用房价预测的具体案例,应用了这些概念。配套练习,则是使用Matlab对以上案例进行实现。感觉设计非常非常合理,比如损失函数,梯度下降,特征归一化,标准差,学习效率等等概念都手动进行实现。当然,为了使用Matlab实现,课程也介绍了Matlab基础和Matrix...原创 2019-07-07 15:24:23 · 226 阅读 · 0 评论 -
【machine learning】Week6 机器学习系统设计
机器学习系统设计模型只是机器学习系统中的一部分, 一个完整的系统,大概还需要,错误分析方法,评价指标,数据和算法的权衡,参数设定等等。学完深度学习再回过头来看机器学习这边的,觉得比较简单,但越往后读,还是觉得接收到很多新的观点,也是挺有用的。错误分析,方法与意义指标,P、R、A、F1数据与算法本文使用记录式的书写方式,因为实在是没有什么特别体会,强行写也没意思。学习曲线这应该是很...原创 2019-10-01 16:39:23 · 179 阅读 · 0 评论 -
【machine learning】Week 7 支持向量机
Week7 支持向量机2019年10月1日13:04摘要svm是一个复杂的模型,文章分三个部分,首先从直观上理解svm。而且介绍了svm的发展,我认为这对理解复杂的现代svm非常关键。其次,文章介绍了线性svm和现代非线性svm。总的来说,我觉得svm实在是太精彩了,从非常简单到最后非常复杂,从低维到高维,最神奇的是,所有理论居然能够统一。当然,本文是在不理解具体数学推导...原创 2019-10-01 16:44:26 · 182 阅读 · 1 评论