完全重建QMF滤波器组的设计
两通道正交镜像滤波器组理论
对于一个给定的信号,经过分析滤波器后,再进行抽取、编码、传输,可以通过零值内插、综合滤波器滤波、求和运算得到恢复和重建。但是重建后的信号并不能与原始信号完全相同,两者之间存在着误差,主要包括:
(1)混叠失真。由抽取和内插产生的混叠和镜像带来的误差,导致分析滤波器组和综合滤波器组的频带不能完全分开;
(2)幅度失真。由于分析和综合滤波器组的频带在通带内不是全通函数,其幅频特性波纹产生的误差;
(3)相位失真。由滤波器相频特性的非线性所产生的误差;
(4)量化失真。由编、解码产生的误差,与量化噪声相似,这类误差无法完全消除,只能设法减小[4]。
matlab代码
N=41;
w=0.43;
[h0,h1,g0,g1]=firpr2chfb(N,w);
[H1z,w]=freqz(h0,1,512);
H1_abs=abs(H1z);H1_db=20*log10(H1_abs);
[H2z,w]=freqz(h1,1,512);
H2_abs=abs(H2z);H2_db=20*log10(H2_abs);
%%%%%%%%%%滤波器h0和h1的幅度响应%%%%%%%%%%
figure(1);
plot(w/pi,H1_db,'-',w/pi,H2_db,'--');
axis([0,1,-100,10]);
grid
xlabel('\omega/\pi');ylabel('幅度,dB');
sum1=H1_abs.*H1_abs+H2_abs.*H2_abs;
d=10*log10(sum1);
%%%%%%%%%%%%幅度响应关系误差%%%%%%%%%%%%