最小均方误差的推导+最小二乘法、梯度下降法、牛顿法、高斯牛顿法

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且
摘要由CSDN通过智能技术生成

ppt
推导
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
基本公式
考虑超定方程组(超定指方程个数大于未知量个数):
1
其中m代表有m个等式,n代表有n个未知数β,m>n ;将其进行向量化后为:Xβ=y
x
b
y
显然该方程组一般而言没有解,所以为了选取最合适的β让该等式"尽量成立",引入残差平方和函数S
s
dd
方法
以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面。

对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:
(1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
(2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。
最常用的是普通最小二乘法( Ordinary Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)- 即采用平方损失函数。

样本回归模型:(其中ei为样本(Xi,Yi)的误差)
样本回归模型
平方损失函数:
平方损失函数
则通过Q最小确定这条直线,即确定β0和β1,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:
偏导
根据数学知识我们知道,函数的极值点为偏导为0的点。
解得:解
这就是最小二乘法的解法,就是求得平方损失函数的极值点。

梯度下降法(英语:Gradient descent)是一个一阶最优化算法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。
我们给出线性回归的损失函数,为了方便,不带正则项:
j
其中
q
具体的梯度下降流程:
第一步:先随便假设一组θ,你要是喜欢可以全部取0
第二步循环迭代:
第一次迭代:
qq
第二次迭代:
ddddd

第x次迭代:…
第三步,

  • 3
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在PyTorch中,您可以使用梯度下降法或拟牛顿法最小化损失函数。下面是一个示例代码,其中使用梯度下降法(使用`torch.optim.SGD`优化器)来最小化损失函数: ```python import torch import torch.nn as nn import torch.optim as optim # 定义模型 class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.linear = nn.Linear(1, 1) # 假设输入是1维,输出是1维 def forward(self, x): return self.linear(x) # 创建模型实例 model = Model() # 定义损失函数 criterion = nn.MSELoss() # 定义优化器 optimizer = optim.SGD(model.parameters(), lr=0.01) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): # 假设输入和目标是一些示例数据 inputs = torch.tensor([[1.0], [2.0], [3.0], [4.0]]) targets = torch.tensor([[2.0], [4.0], [6.0], [8.0]]) # 前向传播 outputs = model(inputs) loss = criterion(outputs, targets) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每一轮打印损失值 print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 在这个例子中,我们首先定义了一个简单的线性模型,并使用均方误差损失函数(`nn.MSELoss()`)来定义损失。然后,我们创建了一个优化器(`optim.SGD`),它将根据梯度更新模型的参数。 在训练循环中,我们使用示例数据进行前向传播,计算损失,并通过反向传播和优化器来更新模型参数。最后,我们打印每一轮的损失值。 如果您想使用拟牛顿法,可以将优化器替换为`torch.optim.LBFGS`,并调整相应的参数。 希望对您有所帮助!如有任何疑问,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值