牛客网:最小邮票数【dp】:部分和问题

本文介绍了一种使用动态规划(DP)解决邮票问题的方法,通过构建dp数组,实现了求解给定邮票凑出特定金额所需的最小邮票数目的算法。文章提供了详细的转移方程及代码实现,同时讨论了如何处理邮票数量限制的情况。
摘要由CSDN通过智能技术生成

在这里插入图片描述
ps:题目有坑,我开25*105的数组就段错误,莫名贡献一次RE,这个dp应该不难(懒得滚动数组了)

dp[i][j]表示用前i个物品凑出j的最小邮票数目,那么他的转移方程是,用前i-1个物品凑出j的邮票数目,和用前i个物品凑出j-a[i]的邮票数目+1的最小值

d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − a [ i ] ] + 1 ) dp[i][j]=min(dp[i-1][j],dp[i-1][j-a[i]]+1) dp[i][j]=min(dp[i1][j],dp[i1][ja[i]]+1)

值得注意的是,这种题如果给每种硬币加一个数量也是类似的解法,即使数量很大我们也可以通过三重循环加剪枝来解决。这类问题统称为部分和问题

下面是两道poj的例题题解,及时复习

例题1

例题2

#include<iostream>
#include<string>
#include<string.h>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
using namespace std;

#define ll int
#define MAX 250
#define inf 10000000

ll a[MAX], n, m, dp[MAX][1005];

int main() {
	while (cin >> m >> n) {
		for (int i = 0; i <= n; i++)for (int j = 1; j <= m; j++)dp[i][j] = inf;
		for (int i = 1; i <= n; i++) cin >> a[i];

		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= m; j++) {
				if (j < a[i]) dp[i][j] = dp[i - 1][j];
				else dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - a[i]] + 1);
			}
		}
		if (dp[n][m] != inf)cout << dp[n][m] << endl;
		else cout << 0 << endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值