Poj 1716& Poj 1201 (Integer) Intervals【贪心|差分约束详解】

在这里插入图片描述
题目链接

一、贪心算法

原文链接:https://blog.csdn.net/linyuxilu/article/details/51954030

先对所有区间按末端点排序

取第i个区间的最后两个元素x和y

若第i+1个区间包含了这两个元素,则跳到下一个区间所取的元素个数+0

若第i+1个区间只包含了这两个元素中的一个(由于有序,所以必定是包含y),则取第i+1个区间的最后一个元素,所取的元素个数+1。为了方便下一区间的比较,更新x和y的值,使他们为当前V集合中最后的两个元素。

若第i+1个区间没有包含这两个元素,则第i+1个区间的最后两个元素,所取的元素个数+2。为了方便下一区间的比较,更新x和y的值,使他们为当前V集合中最后的两个元素。

元素初值初始化为2

x初始化为第一个区间的最后倒数第2个元素

y初始化为第一个区间的最后的元素

#include<stdio.h>
#include<algorithm>
using namespace std;
struct F
{
    int a,b;
} s[10010];
int cmp(F x,F y)
{
    return x.b<y.b;
}
int main()
{
    int n,i,j,x,y;
    scanf("%d",&n);
    for(i=0; i<n; i++)
        scanf("%d%d",&s[i].a,&s[i].b);
    sort(s,s+n,cmp);
    j=2;
    x=s[0].b-1;
    y=s[0].b;
    for(i=1; i<n; i++)
    {
        if(s[i].a<=x&&s[i].b>=y)//如果此区间包含了这两个元素,不用再取
            continue;
        if(s[i].a<=y&&s[i].a>x)//如果只包含一个,肯定是y
        {
            x=y;
            y=s[i].b;//更新x和y
            j+=1;//增加一个元素
        }
        if(s[i].a>y)//如果不包含任意一个元素,就需要增加后两位元素
        {
            x=s[i].b-1;//更新元素的值
            y=s[i].b;//因为数据是从小到大排的额,所以保存后两位
            j+=2;//元素数量加2
        }
    }
    printf("%d\n",j);
    return 0;
}

2、差分约束

原文链接:https://blog.csdn.net/a15110103117/article/details/52513644

对这一道题,每个区间只需要保证2个不同元素即可,我们自然可以从左到右对每个区间贪心的选择最后两个,然后和下一个区间进行比较,可是如果每个区间需要有n个不同元素呢?此时贪心将很难实施,参考poj 1201,更多的使用的是差分约束系统。

我们设a[0]到a[10000],表示从0到i一共有几个整数,比如a[0]为1个(其中有0),a[5]为6个(其中有0,1,2,3,4,5)。

那么利用它们之间的关系可以有这么几个不等式:

1.a[y]-a[x-1]>=2.(y>x,表示[x,y]闭区间的个数)

2.a[i]-a[i+1]>=-1.

3.a[i+1]-a[i]>=0.

差分约束系统中一个比较重要的问题是,如何建图,如果我们希望求最短路径的话,他的松弛条件是

if(d[u]>d[v]+w[v,u])
	d[u]=d[v]+w[v,u]

也就是说在最短路径中,我们执行完松弛之后,对每个点有以下条件成立,如果 u , v u,v u,v恰好是最短路径上相邻的两点,那么等号成立。
d [ u ] ≤ d [ v ] + w [ v , u ] d [ v ] ≥ d [ u ] − w [ v , u ] d[u]\leq d[v]+w[v,u]\\ d[v]\geq d[u]-w[v,u] d[u]d[v]+w[v,u]d[v]d[u]w[v,u]

观察我们上面的不等式,如果将常数项看作两点之间的权重,那么对
a [ y ] − a [ x − 1 ] ≥ 2 a[y]-a[x-1]\geq 2 a[y]a[x1]2,从 y y y x − 1 x-1 x1连接一条权重为 − 2 -2 2的边,以此类推就得到了我们的图,然后求最左的端点到最右端点+1的最短路径即可。相反如果是用最长路做,那么松弛之后就满足
d [ u ] ≥ d [ v ] + w [ v , u ] d [ v ] ≤ d [ u ] − w [ v , u ] d[u]\geq d[v]+w[v,u]\\ d[v]\leq d[u]-w[v,u] d[u]d[v]+w[v,u]d[v]d[u]w[v,u]

那么对于 a [ y ] − a [ x − 1 ] ≥ 2 a[y]-a[x-1]\geq 2 a[y]a[x1]2我们将从 x − 1 x-1 x1连接一条权重为2的边到 y y y。这是我个人对建图的理解。

值得注意的一点是:建立的图可能不联通,我们只需要加入一个超级源点,比如说求取最长路时图不联通的话,我们只需要加入一个点S,对其他的每个点建立一条权值为0的边图就联通了,然后从S点开始进行spfa判环。最短路类似,不过原点到其他点的权值为inf。

如果要判断差分约束系统是否存在解,一般都是判断环,选择求最短路或者最长路求解都行,只是不等式标准化时候不同,判环地话,用spfa即可,n个点中如果同一个点入队超过n次,那么即存在环。

/**
*   差分约束:
*       刚接触差分约束的确很纠结。。
*   差分约束系统的题其实是研究题目的约束条件,再根据最短路在松弛边的时候的固有性质来理解的。
*   就如这题,由题目意思有如下约束条件:
*       dis[u]表示u-1之前所取的关键点的数, 对于边(i, i+1)有
*       1、dis[i+1] - dis[i] >= 0
*       2、dis[i+1] - dis[i] <= 2;
*       对于边(u, v)
*       3、dis[v+1] - dis[u] >= 2   // 在[u, v]区间内必须取2个点以上
*
*       清楚了这些约束条件就可以依此建图了。
*       一开始看了好多人的题解。有求最长路的,有求最短路的,有mn为源点的,有mx为源点的
*   其实,求最长也好最短也好。不过是要理解实质,根据构图的不同,和起始点的不同,最短路最长路都可以的。
*       关键是,怎么把约束条件映射的图上,也就是如何建立这个图,如何加边!
*   首先,可以确定,如果是用最长路做:
*       那么在松弛边(u, v)的时候是根据 先判断 d[v] < d[u] + w ,如果成立 d[u] = d[v] + w;  // w 为边权。
*   这样在松弛完毕后就有  d[v] > d[u] + w 再看看约束条件: dis[i+1] - dis[i] >= 0
*   所以可以这样加边:  add_edge(i, i+1, w);  // 函数原型 add_edge(int u, int v, int w)
*       再看看约束条件: dis[v+1] - dis[u] >= 2 要使得松弛后 d[v] > d[u] + w 那么添边方法:add_edge(u, v+1, 2);
*/
 
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <queue>
#include <map>
#include <vector>
#include <algorithm>
#define DEBUG 0
#define INF 0x1fffffff
#define MAXS 10005
 
typedef long long LL;
using namespace std;
int n, inq[MAXS], dis[MAXS];
struct Edge
{
    int v, w;
    Edge(){}
    Edge(int vv, int ww) {v = vv; w = ww;}
};
vector<Edge> ver[MAXS];
 
void dijkstra(int mx, int mn)
{
    for(int i = mn; i <= mx; i ++) {
        inq[i] = 0;
        dis[i] = -INF;
    }
    queue<int> q;
    inq[mn] = 1;
    q.push(mn);
    dis[mn] = 0;
 
    while(!q.empty())
    {
        int cur = q.front(); q.pop();
        inq[cur] = 0;
        for(int i = 0; i < ver[cur].size(); i ++)
        {
            int v = ver[cur][i].v, w = ver[cur][i].w;
            if(dis[v] < dis[cur] + w) {
                dis[v] = dis[cur] + w;
                if(!inq[v]) {
                    inq[v] = 1;
                    q.push(v);
                }
            }
        }
    }
}
 
 
int main()
{
    while(~scanf("%d", &n))
    {
        int u, v, mx = 0, mn = INF;
        for(int i = 0; i <= MAXS; i ++)
            ver[i].clear();
        for(int i = 0; i < n ; i ++) {
            scanf("%d%d", &u, &v);
            if(v + 1 > mx) mx = v + 1;
            if(u < mn) mn = u;
            /** 约束条件 d[v+1] - d[u] >= 2 */
            ver[u].push_back(Edge(v+1, 2));
        }
 
        /** 添加其他约束条件。 */
        for(int i = 0; i <= mx; i ++) {
            ver[i].push_back(Edge(i+1, 0));
            ver[i+1].push_back(Edge(i, -1));
        }
        dijkstra(mx, mn);
        printf("%d\n", dis[mx]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值