如何成为一名量化工程师?专业猎头建议——几个小tips!

开发者在量化投资中扮演关键角色,负责策略实现、系统开发和支持交易员工作。虽然金融知识不必非常精通,但基础了解是必要的。面试时,重点考察编程能力,如LeetCode刷题。Developer有策略实现、系统构建等多个细分方向,候选人应根据兴趣选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量化投资需要相当多的开发人员,不夸张的说,我们去调研过的量化公司核心办公区,竟然有一半都是developer!

developer在量化交易过程中承担了相当重要的角色,没有成熟完善的系统架构、交易路径、策略思想的编码实现,就无从谈量化交易。

1.基本的知识素养!

量化开发日常的工作主要是支持交易员的日常交易的需求,实现交易的策略和算法,开发 Quant Trader 使用的交易工具等等,因此作为一名developer,需要了解更多和编程相关的内容,也需要学习很多软件开发的工具,比如数据库 SQL,Linux 操作系统等等。

如果是从事算法交易开发还需要扎实的数学基础知识。量化开发是两条腿走路,一边配合量化研究员的工作,一边配合量化交易员的工作,包括提供交易工具进行算法实现、策略执行等等,此外还有一些异常问题处理、交易数据统计等方面的工作。

2.没有金融知识,影响做developer吗?

不能完全不懂,但也不需要精专。

大多数IT转量化的developer在一入职的时候都是对金融市场不了解的,但是通过环境的渲染,都会大概明白商品、期货、股市的概念。

developer不需要深入的了解经济学原理,只要能把策略思想的因果联系弄明白就可以了,基础知识应对足够用了。

3.注意,developer也有细分方向!

这里我们提到的developer是一个宽泛意义上的,如果说的更细致一点,可以分为策略实现、系统构建开发、交易支持等几个方向。

每个方向在技能和思维的要求方面也不尽相同,如果更倾向于策略研发,那么就要以数据科学家的身份多跟研究员进行交流;如果是其它两个方向,就更需要低延迟等IT技能方面的提高,也就是量化系统工程师的角色。

数据科学家的角色基本素质是一定要更理解数据的价值,以及要实现的策略需要用到什么样的数据,包括数据特征和有关细节。

Quade就属于偏策略实现的方向,这也是他个人的偏好。候选人完全可以根据自己的兴趣和优势来选择。

4.如何准备developer的面试?

对quant developer的考察更偏重于代码,候选人可以在leedcode上多刷题。尤其对基本的算法、数据结构,系统设计题要格外重视。

对一个合格的developer类别候选人来说,leetcode不仅仅是招聘是常用的筛选标准,也是锻炼思维的重要手段。

另外,在学习的过程中,一定要多写代码,并学会多角度思考。毕竟在量化公司的面试中,硬核技术的问题考察一定是偏重的方向,而其他软性人文东西,大概过得去就好了。

来源:知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值