2021电赛F题智能送药小车方案分析(openMV数字识别,红线循迹,STM32HAL库freeRTOS,串级PID快速学习,小车自动返回)

2021全国大学生电子设计竞赛F题智能送药小车

前提:本篇文章重在分享自己的心得与感悟,我们把最重要的部分,摄像头循迹,摄像头数字识别问题都解决了,有两种方案一种是openARTmini摄像头进行数字识别加寻迹,即融合代码。另一种是使用openmv4进行数字识别(使用的是模板匹配),然后利用灰度传感器进行寻迹。因为当时python用得不算很熟,最终我们选择了第二种方案使open MV4实现数字识别,灰度传感器寻迹,在控制智能车运动调试的过程中更加简单。当然赛后我们也尝试了使用open ARTmini的方案,同样操作容易。其次我们下来也做了方案三K210数字识别,数字识别率可达97.8%,使用openmv寻迹。
在这里插入图片描述

人们常常希望向成功者获取经验,可是生活中哪有那么多成功者,我想只有失败者才最有发言权,最有经验可以分享吧。因为某些原因我们无缘国奖,但我不甘是失败者,我们为此付出了多少,坚持了多少,只有我们自己知道,只要全力以赴就无所谓失败,也许多年后再回过头来看,想起来这些热血我依然能够热泪盈眶,那就无悔了。
追求卓越,成功才会在不经意见追上你!

目录:
一、题目分析
二、分工以及小车的搭建
三、摄像头部分
四、控制部分
五、联调
六、随谈
七、工程代码

备注:
只需要工程代码的同学(如下是此次电赛过程中所有的代码),建议先看完正文
openMV4模板匹配数字识别方案,本次电赛所有工程代码包括论文报告
https://download.csdn.net/download/cubejava/79012510
openmv巡线代码:
https://download.csdn.net/download/cubejava/41873305
stm32HAL库keil工程(配置freeRTOS,巡线,自动返回,定点停车):
https://download.csdn.net/download/cubejava/41871669
openARTmini巡线和数字识别的融合代码:
https://download.csdn.net/download/cubejava/79012645
小车底板AD原理图和pcb工程:
https://download.csdn.net/download/cubejava/42512528

(可私聊提供技术支持,代码注释完善,若有不懂的可手把手教学)

正文

一、题目

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们是做测控方向的,当时在4号早上7:30左右题目就出来了,随即就有人发在了群里。在这里插入图片描述
看了一下测控方向除了无人机能选的也就D题和F题了,D题是基于互联网的摄像测量系统(D题),我们对这方面的了解不多,没有什么把握,就没敢选,后来听说选D题的在GitHub上能够找到源码,做到后面车调不动时倒有点小后悔,哈哈。

F题经典小车题目,但与往年不同的是今年识别和控制都是重点,必须要先能做到识别,你才能谈接下来的循迹和运动控制。
谈到识别就需要用到摄像头,但之前我们对于摄像头并没有太重视,循迹一般用的都是红外对管,灰度传感器,或者线性CCD就足够了,但是这次的赛到元素存在十字,黑白色块,还要求能自动返回,使用普通的循迹模块就比较吃力了。在电赛备赛期间就做过线性CCD寻迹的智能车,使用的stm32f4,HAL库,cube MX配置的。采取了二值化,动态阈值算法,将CCD采集的值滤波,导入PID,再加入速度环,实现串级PID。也算是练了练手。
在这里插入图片描述
工程链接:https://download.csdn.net/download/cubejava/79012959

二、分工以及小车的搭建

我们组三人都没有玩过摄像头,要立马开始现学,我们一开始准备使用openmv进行循迹和数字识别,后来发现我们的openmv的版本不能训练神经网络,必须要openmvplus(可是没有,买又来不急送到),就很难受。
于是我们想采用openARTMiNi进行数字识别加循迹,但由于python用得不熟,当时没有足够的把握能够实现。所以我们采取了折中的办法,即文章开头说的,openMV使用模板匹配识别数字,寻迹使用灰度传感器。
其中一位学长着手完成openMV模板匹配识别数字,另和我则负责stm32f4的工程创建小车的底层代码和运动控制,使用的HAL库。
由于之前备赛准备的东西比较充分,所以当天上午就把车给搭建好了,使用平衡小车,加了一个万向轮,转弯差速控制。
在这里插入图片描述
小车硬件:
STM32F411CEU6,TB6612,车模(自带霍尔编码器减速电机),LM2596,MPU6050,航模电池,openMV,K210
使用AD画小车底板。原理图和PCB如下
在这里插入图片描述
在这里插入图片描述

小车软件:
使用的HAL库建立工程,在cubeMX中配置freeRTOS操作系统,
在这里插入图片描述
KEIL工程程序代码:
在这里插入图片描述

串口重定向printf

/*串口重定向printf*/
int fputc(int ch, FILE *f)
{
   
  HAL_UART_Transmit(&huart6, (uint8_t *)&ch, 1, 1000);
  return ch;
}

编码器模式取值

/*编码器模式取值*/
int Read_Encoder(uint8_t TIMX)           
{
   
   int Encoder_TIM
智能送药小车使用灰度传感器进行巡线,控制器采用STM32F103。灰度传感器可以寻找黑线或其他颜色的线进行循迹。相比红外传感器,灰度传感器的效果更好。在该项目中,由于摄像头受到光照和阴影的影响较大,无法很好地进行循迹,因此选择了灰度传感器。\[1\] 在搭建智能送药小车的过程中,团队成员分工明确。一位学长负责使用OpenMV进行模板匹配识别数字,另一位负责创建小车的底层代码和运动控制,使用STM32F103和HAL库小车的硬件包括STM32F411CEU6控制器、TB6612驱动模块、带有霍尔编码器减速电机的车模、LM2596电源模块、MPU6050陀螺仪、航模电池和OpenMV或K210摄像头。\[2\] 在备赛期间,团队还进行了线性CCD寻迹智能车的实验。使用STM32F4控制器、HAL库和Cube MX进行配置,采用二值化、动态阈值算法对CCD采集的值进行滤波,然后导入PID控制算法,并加入速度环,实现串级PID控制。这个实验为团队成员提供了一定的经验和技术基础。\[3\] 总结来说,智能送药小车使用灰度传感器进行巡线,控制器采用STM32F103。团队成员在搭建小车和进行相关实验时,分工明确,使用了OpenMV进行数字识别和模板匹配,同时也进行了线性CCD寻迹智能车的实验。 #### 引用[.reference_title] - *1* [基于STM32F103C8T6最小系统板驱动灰度模块进行循迹](https://blog.csdn.net/qq_60043905/article/details/126195543)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [2021电赛F智能送药小车方案分析(openMV数字识别,红线循迹,STM32HAL库freeRTOS,串级PID快速学习,小车自动...](https://blog.csdn.net/cubejava/article/details/121274043)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值