这篇文章服务于GIS背景用户以及有志于GIS的朋友
操作资源位置:【免费】交通地理信息系统实习三源数据资源-CSDN文库
软件安装包位置:【免费】TransCad-交通地理信息系统软件资源-CSDN文库
一、实习目的
1.1了解网络流与设施定位分析的基本方法和原理
网络流理论主要研究网络中流(如交通流、物流、信息流等)的传输与优化问题。它基于图论,将实际问题抽象为网络模型,其中节点代表设施或地点,边代表连接这些设施或地点的路径,边上的权重可能代表距离、成本或容量等。网络流分析的目标是找到最优的流分配方案,以最小化成本或最大化效益。
设施定位分析则是在给定一组候选设施地点和一系列需求点的情况下,确定设施的最佳位置。这涉及到权衡设施的建设成本、运营成本以及满足需求点的效率和便利性。设施定位分析常用的方法有重心法、覆盖模型、P中值问题等。理解这些基本方法和原理对于应用相关软件工具进行实际问题分析至关重要。
1.2掌握基于TransCAD的最小费用流MCFP、运输问题The Transportation Problem和设施定位Facility Location Problems分析的实现流程
TransCAD6.0是一款强大的地理信息系统和交通规划软件,它提供了丰富的工具来支持网络流和设施定位分析。
对于最小费用流(MCFP)分析,实现流程通常包括:定义网络(包括节点和边的属性)、设置源点和汇点、指定流量需求、设置成本函数、运行最小费用流算法并查看结果。这个过程中可能需要调整参数以优化结果。
运输问题(The Transportation Problem)通常涉及到多个供应点和需求点之间的货物或人员运输。在TransCAD中,实现流程包括:定义供应点和需求点的位置及属性、设置运输成本、构建运输矩阵、运行运输算法并分析结果。通过调整运输成本或供应/需求量,可以找到最优的运输方案。
设施定位问题(Facility Location Problems)在TransCAD中的实现流程涉及:确定候选设施地点和需求点的位置及属性、设置设施的建设和运营成本、运行设施定位算法(如P中值、覆盖模型等)、分析并选择合适的设施位置。这个过程可能需要考虑多种因素,如设施的服务范围、服务质量以及需求点的分布等。
1.3熟悉基于ArcGIS网络数据集的Location-Allocation设施定位分析功能实现流程
ArcGIS是一款功能强大的地理信息系统软件,其网络分析扩展模块提供了丰富的网络分析和设施定位功能。
基于ArcGIS网络数据集的Location-Allocation设施定位分析功能实现流程通常包括:创建或导入网络数据集(包括节点和边的空间及属性信息)、定义需求点的位置及需求量、设置设施的建设和运营成本以及服务范围、选择合适的设施定位分析方法(如最小化总成本、最大化覆盖范围等)、运行分析并查看结果。通过ArcGIS的可视化功能,可以直观地展示设施的位置、服务范围以及需求点的覆盖情况,从而帮助决策者更好地理解分析结果并做出决策。
在这个过程中,理解ArcGIS的网络分析工具和Location-Allocation模块的工作原理对于正确设置参数和解读结果至关重要。同时,根据实际问题的需要,可能需要调整分析方法或参数以获得更优化的设施定位方案。
二、网络流与设施定位
这里我们的实际操作依旧是参照王老师给定的实习指导书中的内容,在TransCAD6.0中进行网络流与设施定位操作。
2.1打开软件操作说明
这里需要给出一个必要的说明,TransCAD6.0软件在重启后会出现概率的闪退或无法打开现象,这里给出如下解决方案:
我们需要将同时放在TransCAD压缩包中的《TC6.0补丁》文件夹下的所有文件复制到TransCAD6.0的安装目录下,替换掉原文件即可。
接下来我们打开TCW软件即可以运行TransCAD6.0软件,TCW应用程序如图2-1所示:
图2-1 TCW应用程序
这里需要说明的是,若未重启也无法打开软件,也可以尝试将放在TransCAD压缩包中的《TC6.0补丁》文件夹下的所有文件复制到TransCAD6.0的安装目录下替换掉原文件。
2.2数据导入
这里我们先打开Lab4WS1.wrk文件;如图2-2所示:
图2-2 起始界面视图
如上图2-3,这是一个由六个城市组成的网络。点击Networks/Paths—Settings,将File改为MYnetwork.net,其他保持默认,点击确定;接下来打开Cities的数据视图,可以看到在这六个城市中,有三个城市是供应点(即工厂),其他三个城市为需求点(即仓库)操作示意如图所示:
图2-3 Cities数据视图
2.3问题解答(first)
①其中,香港是工厂城市还是仓库城市?(2分)
解答:
①香港是仓库城市,因为香港是demand即需求点。
2.4打开数据视图
接下来我们需要打开ShipmentNetwork层的数据视图,操作示意如图2-4所示:
图2-4 建立TSPstops数据集
2.5问题解答(second)
①在ShipmentNetwork数据视图的"Dir "栏中列出的"0 "是什么意思?(提示:"Dir "与允许的流动方向有关。如果你不知道答案,请阅读《TransCAD用户指南》的第13章。)(2分)
解答:
①Dir”栏中的”0”代表着该条道路是双向的。Dir全称是Direction,用于定义道路允许的载流方向。当该连线为双向时,该域包含的数值为 0。如果连线为单程的,则该域包含的数值为 1 或-1,其中1代表着运行为单程,方向和线要素的坐标存储方向相同(拓扑方向),而-1相反。
2.6输出最佳分配方式属性表
接下来要找出三个工厂物资的最佳分配方式,以满足三个仓库的需求,同时使总运输成本最小。首先点击Routing/Logistics--Minimum Cost Flow,在Link Cost下拉列表中选择Cost,并进行其他参数设置,最后将输出文件保存为固定格式的二进制文件,命名为MCFP_Output;操作如图2-5所示:
图2-5 保存结果示意图
2.7问题解答(third)
①现在,根据MCFP_Output,在下面的矩阵中填写工厂城市和仓库城市之间的流量分配情况。(5分)(提示:可将LINKID信息标注在图层中,更方便查找)
Beijing | HongKong | Nanchang | Subtotal | |
Chengdu | 110 | |||
Qingdao | 140 | |||
Nanjing | 150 | |||
Subtotal | 180 | 120 | 100 | 400 |
②上述矩阵中的解决方案的总运输成本是多少(提示:每个网络环节的单位运输成本都存储在ShipmentNetwork数据视图中。(3分)
解答:
①矩阵如表2-1所示:
表2-1
Beijing | HongKong | Nanchang | Subtotal | |
Chengdu | 0 | 110 | 0 | 110 |
Qingdao | 140 | 0 | 0 | 140 |
Nanjing | 40 | 10 | 100 | 150 |
Subtotal | 180 | 120 | 100 | 400 |
②总运输成本为19,ShipmentNetwork数据视图如图2-6所示:
图2-6 ShipmentNetwork数据视图
2.8保存操作(first)
进行完如上操作后,我们便完成了一个阶段性的小目标,接下来我们只需要按照规定操作Save Workspace as到Lab4Data文件夹中,并命名为Lab4WS1A.wrk,操作结果如图2-7所示:
图2-7 保存操作视图
2.9运输问题分析
运输问题是最小成本流量问题的一个特例。上述流量分配问题也可以用Routing/Logistics –The Transportation Problem程序来解决。然而TransCAD的运输问题程序首先需要在供应节点和需求节点之间建立一个成本矩阵。点击Routing/Logistics--Cost Matrix,然后在Cost Matrix窗口中设置如下图所示。将输出文件保存为矩阵文件,命名为"TP_cost.mtx";操作示意如图2-8和图2-9所示:
图2-8 cost matrix操作示意图
图2-9 输出矩阵示意图
接下来点击Routing/Logistics--The Transportation Problem选项,在弹出窗口中进行参数设置,并将输出文件保存在Lab4Data中,第一个输出文件命名为"TP_trans.mtx"(即一个矩阵文件),第二个输出文件命名为"TP_tranship.bin"(即一个固定格式的二进制文件);操作示意如图2-10和图2-11所示:
图2-10 TTP分析示意图
图2-11 矩阵输出示意图
2.10问题解答(fourth)
①根据The Transportation Problem程序的输出,在下面的矩阵中填写工厂城市和仓库城市之间的流量分配。(5分)
Beijing | HongKong | Nanchang | Subtotal | |
Chengdu | 110 | |||
Qingdao | 140 | |||
Nanjing | 150 | |||
Subtotal | 180 | 120 | 100 | 400 |
②是哪两个特征使得运输问题成为了最小成本流问题的一个特例?(4分)
解答:
①矩阵如表2-2所示:
表2-2 The Transportation Problem流量分配矩阵
Beijing | HongKong | Nanchang | Subtotal | |
Chengdu | 0 | 110 | 0 | 110 |
Qingdao | 140 | 0 | 0 | 140 |
Nanjing | 40 | 10 | 100 | 150 |
Subtotal | 180 | 120 | 100 | 400 |
②由图2-12可知,与最小成本流问题相比运输问题没有中转点,只有起点和终点结点且弧段的流量无容量约束。
图2-12 对比视图
2.11保存操作(third)
进行完如上操作后,我们便完成了一个阶段性的小目标,接下来我们只需要按照规定操作Save Workspace as到Lab4Data文件夹中,并命名为Lab4WS1B.wrk,操作结果如图2-13所示:
图2-13 保存操作视图
2.12关闭窗口
这里为了对后续步骤产生影响,需要关闭窗口。点击File –Close All关闭当前的TransCAD窗口,对弹出的Save Your Work窗口点击No to All按钮(因为上一步已经保存了一个工作区文件)。
2.13设施位置问题数据插入
首先点击File--Open Workspace选项,打开Lab4Data中的Lab4WS2.wrk文件,将看到一张美国48个州的地图:STATES:显示48个州的边界;ROADS:显示州际公路;Facilities:显示设施的候选地点;CITIES:显示主要城市的位置(即需求点)。操作示意如图2-14所示:
图2-14美国48个州的地图
2.14保存操作
点击Routing/Logistics--Facility Location菜单选项,在Facility Location对话窗口中设置如下图所示,输出文件命名为location_1.bin保存到Lab4Data文件夹中;操作示意如图2-15和图2-16所示:
图2-15 FL示意图
图2-16 输出示意图
2.15问题解答(fifth)
①根据上面对话窗口的设置,你能分辨出它是被设置为解决"p-中位数问题"、"p中心问题"、"最大覆盖位置问题"还是"集合覆盖位置问题"吗(提示:如果需要的话,请查阅讲义)?(4分)
②列出解决方案中报告的两个设施地点的"设施编号"。(2分)
解答:
①经过查阅资料可知
- 中值问题(median problem):以用户到最近设施的平均距离最小原则,确定固定数量设施的位置(救护车分布)。
- 中心问题(center problem):极小极大化问题,以用户到达设施的最小或者最大距离来选择评价设施位置的优越程度。
- 覆盖问题(covering problem):集覆盖问题-覆盖所有需求点的前提下,服务站总个数或费用最小;最大覆盖问题-设施数目和服务半径已知,如何设立p个设施使得可接受服务的需求量最大。
针对该题,这是在解决P-中值问题。其中Objective栏中选择的Minimize average cost of service释义为最小化平均服务成本,即最小化平均距离,因此这是解决P-中值问题。
②由图2-17可知,在得出的Location_1表中,Facility ID一栏下边都是2079和2334,在最后的minicost一栏中Client ID 2079和2334都为0,故“设施编号”为2334和2079。
图2-17 属性表数据视图
2.16不同类型设施定位问题
点击Routing/Logistics –FacilityLocation,勾选As Many As Needed框,并在Constraint: Average cost of service <=框中输入400,同时确保其他设置与下图一致,将输出文件保存在Lab4Data文件夹中,并命名为location_2.bin;操作示意如图2-18和图2-19所示:
图2-18 FL示意图
图2-19 输出示意图
2.17问题解答(sixth)
①根据TransCAD的输出结果来看,有多少设施将被放开?列出这些开放设施的ID。(3分)
②根据这个设施位置问题的设置,你能判断出它是为了解决"p-中位数问题"、"p中心点问题"、"最大覆盖位置问题",还是"集合覆盖位置问题"(提示:必要时复习讲义)?(4分)
解答:
①由图2-20可知,有四个设施将被放开,他们的ID分别是1388,1558,2334,2654。
图2-20 属性表数据视图
②经过查阅资料可知
- 中值问题(median problem):以用户到最近设施的平均距离最小原则,确定固定数量设施的位置(救护车分布)。
- 中心问题(center problem):极小极大化问题,以用户到达设施的最小或者最大距离来选择评价设施位置的优越程度。
- 覆盖问题(covering problem):集覆盖问题-覆盖所有需求点的前提下,服务站总个数或费用最小;最大覆盖问题-设施数目和服务半径已知,如何设立p个设施使得可接受服务的需求量最大。
这里通过分析可知仍为P-中值问题,不过限制因素更多:要求设施服务下的需求点到设施的平均距离小于等于400,勾选了As many as need。
2.18保存操作(fourth)
进行完如上操作后,我们便完成了一个阶段性的小目标,接下来我们只需要按照规定操作Save Workspace as到Lab4Data文件夹中,并命名为Lab4WS2B.wrk,操作结果如图2-21所示:
图2-21 保存操作视图
2.19删除New Facilities选择集;
这里为了后续操作,我们需要删除New Facilities选择集,操作示意如图2-22所示:
图2-22 删除选择集操作示意图
2.20第三种类型的设施位置问题
点击“Routing/Logistics –Facility Location选项,在目标框中选择Minimize highest costof service,并按照下图所示进行其他设置,将输出文件保存在Lab4Data文件夹中,命名为"location_3.bin";操作示意如图2-23和图2-24所示:
图2-23 FC操作示意图
图2-24 输出示意图
2.21问题解答(seventh)
①列出解决方案中报告的设施位置的ID。(2分)
②根据上述设置,你能判断出它是为了解决“p-中位数问题”、“p-中心点问题”、“最大覆盖位置问题”,还是“集合覆盖位置问题”(提示:必要时复习讲义)?(4分)
解答:
①由图2-25可知,该设施ID为2085
图2-25属性表数据图
②经过查阅资料可知
- 中值问题(median problem):以用户到最近设施的平均距离最小原则,确定固定数量设施的位置(救护车分布)。
- 中心问题(center problem):极小极大化问题,以用户到达设施的最小或者最大距离来选择评价设施位置的优越程度。
- 覆盖问题(covering problem):集覆盖问题-覆盖所有需求点的前提下,服务站总个数或费用最小;最大覆盖问题-设施数目和服务半径已知,如何设立p个设施使得可接受服务的需求量最大。
经分析可知,这里为P-中心问题,这里是选出一个设施点,让所有需求点中,距离设施最大的那个距离最小。因此,这个问题是P-中心问题。
2.22保存操作(fifth)
进行完如上操作后,我们便完成了一个阶段性的小目标,接下来我们只需要按照规定操作Save Workspace as到Lab4Data文件夹中,并命名为Lab4WS2C.wrk,操作结果如图2-26所示:
图2-26 保存操作视图
三、实习总结
作为大二本科生,与大三的学长学姐同堂上课的确是一项不小的挑战。在课堂上,老师讲述了网络流与设施定位的理论知识,并特别强调它们在TransCAD软件中的实际应用。通过这次实操,我对网络流和设施定位有了更为清晰的认识,并掌握了在TransCAD中进行相关操作的基本技能。
网络流与设施定位作为GIS-T领域的核心内容,在交通规划、资源分配和设施布局等方面具有广泛的应用。在这次TransCAD的实际操作中,我将网络流与设施定位的理论知识转化为应用技能。通过构建交通网络模型,设置节点和边的属性,我运用最小费用流算法得到了网络中的最优流分配方案。
学习过程中,我也遇到了一些挑战。在构建复杂的交通网络模型时,需要仔细考虑节点和边的设置以及属性的赋值,以确保模型的准确性。在设施定位分析中,需要权衡不同因素之间的关系,寻找最优的设施布局方案。然而,通过不断的实践和尝试,我逐渐克服了这些困难,并提高了自己的操作能力。
“学而不思则罔,思而不学则殆。”感谢老师的悉心教导和助教学姐的帮助与支持!