区域生长法分割图像

dev_close_window ()
dev_clear_window ()

read_image (Image, 'printer_chip/printer_chip_01')
get_image_size (Image, Width, Height)

dev_close_window ()
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)

*区域生长法分割图像(分割之前最好使用光滑滤波算子对图像进行平滑处理)
*平滑处理
median_image (Image, ImageMedian, 'circle', 1, 'mirrored')
*区域生长法分割图像得到图像(第三个参数和第四个参数是掩模的高和宽,第五个参数是阈值,最后一个参数是分割后最小区域面积值)
regiongrowing (ImageMedian, Regions, 1, 1, 1, 1000)

 

区域生长是一种基于像素相似性的图像分割方法,其基本思想是将具有相似像素值的像素归为同一区域。在Matlab中,可以通过以下步骤实现区域生长分割图像: 1. 读入图像并预处理。 ```matlab I = imread('image.jpg'); % 读入图像 I = im2double(I); % 将图像转换为double类型 I = imresize(I,0.5); % 缩小图像,加快计算速度 ``` 2. 选择种子点。 在区域生长中,需要选择一个或多个种子点作为起点。可以手动选择种子点,也可以使用自动选择方法。这里以手动选择为例: ```matlab imshow(I); % 图像 [x,y] = getpts; % 获取鼠标点击位置 seed = [x,y]; % 保存种子点 ``` 3. 定义生长条件。 定义生长条件是区域生长的核心,它决定了哪些像素可以被归为同一区域。常用的生长条件包括像素间的灰度差、像素间的距离等。这里以灰度差为例: ```matlab diff = 0.1; % 灰度差阈值 ``` 4. 进行区域生长。 选择好种子点和生长条件后,就可以进行区域生长了。Matlab中提供了`regiongrowing`函数来实现区域生长: ```matlab BW = regiongrowing(I,seed,diff); % 进行区域生长 ``` 5. 示结果。 区域生长完成后,可以将结果示出来: ```matlab imshow(BW); % 分割结果 ``` 完整的代码如下: ```matlab I = imread('image.jpg'); % 读入图像 I = im2double(I); % 将图像转换为double类型 I = imresize(I,0.5); % 缩小图像,加快计算速度 imshow(I); % 图像 [x,y] = getpts; % 获取鼠标点击位置 seed = [x,y]; % 保存种子点 diff = 0.1; % 灰度差阈值 BW = regiongrowing(I,seed,diff); % 进行区域生长 imshow(BW); % 分割结果 ``` 注意:区域生长是一种基于像素相似性的图像分割方法,其结果可能会受到种子点的影响。因此,在实际应用中,需要根据具体情况选择合适的分割方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值