题目描述
一个数的序列bi,当b
1 < b
2 < ... < b
S的时候,我们称这个序列是上升的。对于给定的一个序列(a
1, a
2, ..., a
N),我们可以得到一些上升的子序列(a
i1, a
i2, ..., a
iK),这里1<= i
1 < i
2 < ... < i
K <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
题解:这就是一个动态规划的问题,我们可以吧这个序列分为一些小的子序列,当子序列的问题解决了,那么整个序列的问题也就解决了。
对这个题来说,找Ai数之前序列maxlen【】的最大值,然后加上一,就是到Ai的最长子序列。
示例输入
7 1 7 3 5 9 4 8
示例输出
4
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int n,a[10001],maxlen[10001],i,j;
cin>>n;
for(i=1;i<=n;i++)
cin>>a[i];
maxlen[1]=1;//第一个数的长度肯定为一。
for(i=2;i<=n;i++)
{
int m=0;//定义m的目的就是找最大值。
for(j=1;j<i;j++)//找i之前的数。
{
if(a[i]>a[j])
{
if(m<maxlen[j])
m=maxlen[j];//m就保留Ai之前的序列的最大值。
}
}
maxlen[i]=m+1;//加一就行。
}
int max1=0;
for(i=1;i<=n;i++)
{
if(max1<maxlen[i])
max1=maxlen[i];
}
cout<<max1<<endl;
return 0;
}
#include<iostream>
#include<cstring>
using namespace std;
int len,arr[1001],behind[1001];//在这个数组里存放子序列长度相等的末尾元素的最小值。
int search1(int i)
{
int left,right,mid;
left=0;right=len;
while(left<right)
{
mid=left+(right-left)/2;
if(behind[mid]>=arr[i])
right=mid;//这里之所欲不是mid-1,是因为我们要进行元素的插入,找到比插入元素大的下界。
else
left=mid+1;
}
return left;
}
int main()
{
int T,i;
while(cin>>T)
{
for(i=1;i<=T;i++)
cin>>arr[i];
behind[1]=arr[1];
len=1;
for(i=2;i<=T;i++)
{
if(arr[i]>behind[len])
behind[++len]=arr[i];
else
{
int pos=search1(i);
behind[pos]=arr[i];
}
}
cout<<len<<endl;
}
return 0;
}
题解:这个方法相比上一个要节省时间,它利用了二分查找的原理在behind[]数组中找到一个j,是的behind【j-1】<arr[i]<behind[j],然后返回j。
<strong><span style="font-size:18px;">最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时。LIS问题可以优化为nlogn的算法。
定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
最终答案就是len
利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。</span></strong>