53. Maximum Subarray

题目

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

分析

最长连续子数组的和问题,本文的解决方法是O(n)的,先比较加入i前与加入i后的子数组哪个更大,则当前的子数组就保存为较大者,然后用这个子数组与当前得到的最大子数组比较,决定是否更改最大子数组的值,提示中的用到分治法的是算法导论中给出的方法,即将数组分为左右两部分,先找完全在左边的最大子数组,再找完全在右边的,最后找穿过中间点的,进而变成只需要找穿过中间点的即可,因为完全在左和在右是更小规模的原问题。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int res=INT_MIN;//记录整个数组的最大子数组和
        int sub=0;//记录当前的最大子数组
        for(auto i:nums){
            sub=max(sub+i,i);//判断是否需要更改当前最大子数组的值,即是加入i还是从i开始
            res=max(res,sub);//判断当前最大子数组是否是全局的最大子数组
        }
        return res;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值