题目
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4]
,
the contiguous subarray [4,-1,2,1]
has the largest sum = 6
.
More practice:
分析
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
最长连续子数组的和问题,本文的解决方法是O(n)的,先比较加入i前与加入i后的子数组哪个更大,则当前的子数组就保存为较大者,然后用这个子数组与当前得到的最大子数组比较,决定是否更改最大子数组的值,提示中的用到分治法的是算法导论中给出的方法,即将数组分为左右两部分,先找完全在左边的最大子数组,再找完全在右边的,最后找穿过中间点的,进而变成只需要找穿过中间点的即可,因为完全在左和在右是更小规模的原问题。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res=INT_MIN;//记录整个数组的最大子数组和
int sub=0;//记录当前的最大子数组
for(auto i:nums){
sub=max(sub+i,i);//判断是否需要更改当前最大子数组的值,即是加入i还是从i开始
res=max(res,sub);//判断当前最大子数组是否是全局的最大子数组
}
return res;
}
};