cuihaoren01
码龄11年
关注
提问 私信
  • 博客:154,384
    社区:166
    问答:947
    155,497
    总访问量
  • 47
    原创
  • 780,009
    排名
  • 43
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2014-05-11
博客简介:

cuihaoren01的专栏

查看详细资料
个人成就
  • 获得44次点赞
  • 内容获得25次评论
  • 获得340次收藏
  • 代码片获得288次分享
创作历程
  • 7篇
    2021年
  • 1篇
    2020年
  • 4篇
    2019年
  • 1篇
    2018年
  • 1篇
    2017年
  • 20篇
    2016年
  • 23篇
    2015年
成就勋章
TA的专栏
  • 论文阅读
    6篇
  • 机器学习理论知识
    2篇
  • mmdetection
    3篇
  • Android开发秘籍笔记
    19篇
  • Material Design学习
    5篇
  • Android学习
    10篇
  • Android
    3篇
  • 问题解决
    5篇
  • http协议
  • php
    1篇
  • java 学习
    2篇
  • 设计模式学习
    2篇
  • 面试记录
    1篇
  • 招聘
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络pytorch图像处理
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SegNet论文笔记及其创新点代码解析

论文名称:SegNet: A Deep Convolutional Encoder-Decoder Architecture for ImageSegmentation论文链接:SegNet项目地址:
原创
发布博客 2021.07.26 ·
774 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

机器学习理论知识-逻辑回归

紧接着上一章节的线性回归,这一周学习下逻辑回归。同样参照的资料斯坦福大学2014(吴恩达)机器学习教程中文笔记那本文的知识体系如下:基本知识点定义而线性回归yi=wi∗xi+by_{i} = w_{i}*x_{i} + byi​=wi​∗xi​+b,模型的范围是可以为$\left { -∞,+∞ \right } ,线性回归能预测连续的值,然而对于分类问题,我们的因变量可能属于两个类别正向类和负向类,即,线性回归能预测连续的值,然而对于分类问题,我们的因变量可能属于两个类别正向类和负向类,即,线性
原创
发布博客 2021.05.16 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习理论知识-线性回归

本专栏用来回顾下,此前学习的各种机器学习理论知识,网上各种资料很丰富,我这边主要借鉴至:斯坦福大学2014(吴恩达)机器学习教程中文笔记按照该博主的笔记,结合一些博客,按照我自己想要了解的知识体系进行了归纳。不得不说,up主写的实在是太完美了,把吴恩达老师的笔记整理的透透的。大大节省了观看视频的时间,佩服佩服!首先就学习下机器学习中最简单的问题—线性回归问题。主要的知识框架如下:解决哪些问题线性回归解决的事线性拟合问题,通俗点来说:就是有一系列的自变量xix_{i}xi​和其对应的因变量yiy_
原创
发布博客 2021.05.05 ·
801 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

一张图梳理YOLOv4论文

本文转载自:一张图梳理YOLOv4论文 - pprp - 博客园该博主整理的十分的完备,我这边就直接转载过来,为保留学习使用,如侵犯权利,请及时提醒。一张图梳理YOLOv4论文AlexeyAB大神继承了YOLOv3, 在其基础上进行持续开发,将其命名为YOLOv4。并且得到YOLOv3作者Joseph Redmon的承认,下面是Darknet原作者的在readme中更新的声明。来看看YOLOv4和一些SOTA模型的对比,YOLOv4要比YOLOv3提高了近10个点。思维导图YOLOv4总体上
转载
发布博客 2021.05.04 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ATSS论文阅读笔记

ATSS论文阅读笔记论文名称:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection论文链接:https://arxiv.org/abs/1912.02424代码地址:https://github.com/sfzhang15/ATSS.摘要1、Anchor-based方法和Anchor-free的方法最重要的差异就是在如何定义正负训练样本;2、AT
原创
发布博客 2021.04.27 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

YOLOF论文阅读笔记

YOLOF论文阅读论文名称:You Only Look One-level Feature论文链接:https://arxiv.org/pdf/2103.09460.pdf代码链接:https://github.com/megvii-model/YOLOF摘要1、 作者探究了FPN之所以能提升检测效果的原因:主要是因为分治的思想而非多尺度特征融合;2、 作者提出一种替换FPN复杂的特征金字塔的方案,仅使用一个层级的特征进行检测,提出了YOLOF,其中两个重要组件Dilated Encoder和U
原创
发布博客 2021.04.23 ·
235 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Libra R-CNN论文阅读笔记

摘要1、检测器的性能所限于训练过程的不平衡问题,作者主要从三个层面解决训练过程的不平衡问题–sample level,feature level,objective level。2、IoU balanced对应sample level的解决方案,balanced feature pyrmaid对应feature level的解决方案,balanced L1 loss对应Objective level的解决方案。ps:这种结构的文章看起来还是舒服的,写起来应该也很舒服吧,哈哈哈。引言无论是单阶段还是
原创
发布博客 2021.04.18 ·
395 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

FCOS论文笔记

论文:FCOS: Fully Convolutional One-Stage Object Detection论文链接:https://arxiv.org/abs/1904.01355论文代码:https://github.com/tianzhi0549/FCOSPrefaceIntroduction首先作者按照“惯例”说明了基于Anchor based检测器的缺点:基于Ancho...
原创
发布博客 2020.03.03 ·
528 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

mmDetection源码分析(三):Faster R-CNN模块解读(一)

Faster R-CNN模块解读(一)— 检测器的构建根据之前的介绍,config文件中的 model 中的 type 指定了检测器是一个Faster R-CNN检测器。我们知道要调用一个检测模型要用到函数model = build_detector(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)。接下来,我们看看其是如何调...
原创
发布博客 2019.12.11 ·
2530 阅读 ·
1 点赞 ·
1 评论 ·
16 收藏

mmDetection源码分析(2):训练与配置文件

训练函数调用训练脚本python tools/train.py configs/faster_rcnn_r50_fpn_1x.py训练可选项:–work_dir:模型checkpoint以及训练log文件的输出目录,若在脚本中不设置,则为config/*.py中work_dir中的路径。–resume_from:指定在某个checkpoint的基础上继续训练,若在脚本中不设置,则为co...
原创
发布博客 2019.12.03 ·
1789 阅读 ·
0 点赞 ·
1 评论 ·
13 收藏

mmDetection源码分析(一):inference阶段代码调用

mmdetection介绍mmDetection(mmdetection)应该是目前最流行的检测网络框架了,由香港中文大学与商汤合作维护的一个检测工具箱,目前仍然在不断的更新中。本系列打算研究学习下如何使用mmDetection去复现其他论文的检测网络模型或者构建自己的网络模型,以及如何使用mmDetection训练自己的数据。网上已有不少mmDetection源码分析博客,大家也都是按照各自...
原创
发布博客 2019.12.02 ·
7545 阅读 ·
4 点赞 ·
1 评论 ·
23 收藏

2D坐标系与3D坐标系的相互转换--python实现

并不是做关于SLAM方向的,但由于某些任务涉及到,故作此笔记~相机内参矩阵:不同的的深度摄像头具有不同的特征参数,在计算机视觉里,将这组参数设置为相机的内参矩阵C:[fx0cx0fycy001 ]\begin{bmatrix} f_x& 0 &c_x \\\\ 0 & f_y & c_y \\\\ 0 &amp...
原创
发布博客 2019.07.15 ·
32750 阅读 ·
20 点赞 ·
17 评论 ·
244 收藏

第一次面试记录

第一次面试Java中"=="与Equal的区别“==”是运算符,用于比较两个变量是否相等。Java中的基本数据类型包括:byte,short,char,int,long,float,double,boolean他们之间的比较,应用双等号,比较的是他们的值。若操作数的类型是基本数据类型,则该关系操作符判断的是左右两边操作数的值是否相等。若操作数的类型是引用数据类型,则该关系操作符判断的是...
原创
发布博客 2018.11.08 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Java中的多线程实现方式

Java中的多线程实现方式在我们的开发的过程中,常常会碰到多线程的问题,对于多线程的实现方式主要有两种:实现Runnable接口、集成Thread类。对于这两种多线程实现的方式也是有一些差异的。网上针对此问题基本都是使用买票系统的例子,接下来我们就用代码来模拟下售票系统,实现2个售票点发售10张车票,一个售票点表示一个线程。方案一首先从最简单的做法开始,开两个Thread类进行售票。 测试代码如下
原创
发布博客 2017.03.03 ·
336 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

BaseRecyclerViewAdapterHelper的测试使用

发布资源 2016.06.29 ·
rar

RecyclerView总结学习(二)

RecyclerView开发学习(二)前言上一篇学习了下RecyclerView的基本使用,主要是一些基本操作。回顾下: RecyclerView 是Android L版本中新添加的一个用来取代ListView的SDK,它的灵活性与可替代性比listview更好.首先还是POST出我的学习链接: http://blog.csdn.net/lmj623565791/article/detail
原创
发布博客 2016.06.28 ·
1146 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

layout_*的一些注意事项

layout_*的一些注意事项在Android UI的开发中layout_*应该是用的很多的,但其中有很多的坑想必大家也碰到过,今天就来写写自己碰到的!之后如果还有碰到就在添加。layout_width | layout_height起因先来说说起因,做一个自定义的Dialog。这本来是很简单的事情,以前也做过很多次包括PopupWindow。可能是之前到处借鉴别人的代码,没怎么注意,今天自
原创
发布博客 2016.06.17 ·
1234 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RecyclerView总结学习(一)

RecyclerView总结学习(一)RecyclerView已经出现有一年多了,各种“该有的”东西也都有了。这里就来总结学习一发!照常先贴学习链接: http://blog.csdn.net/lmj623565791/article/details/45059587 https://github.com/codepath/android_guides/wiki/Using-the-Recycl
原创
发布博客 2016.06.13 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Material Design(五)

今天来学习下之前一直在用但却从没研究过的Toolbar吧。这个小东西在如今的Android开发中几乎是必用,用过很多次但每次自己想写的时候却只能写个简单的出来。现在就来深究下!照常先贴学习链接: http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2014/1118/2006.html这个链接呢,基本上把Toobar的一些主要知识点介绍了下。
原创
发布博客 2016.05.26 ·
467 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Toolbar与DrawerLayout配合详解

发布资源 2016.05.26 ·
zip
加载更多