《从量子计算到AI催化:一位材料学博士的多尺度模拟通关秘籍》

我是某985高校材料模拟方向的博士生,研究锂硫电池催化剂5年,经历过:

  • DFT算到崩溃:过渡态搜索3周不收敛;

  • MD模拟翻车:力场参数选错导致结果完全失真;

  • ML模型过拟合:预测的催化剂活性被实验组打脸...

直到系统掌握了多尺度模拟+机器学习的协同方法,才真正打通"原子设计→性能预测→实验验证"的闭环。这门课正是我希望能早点遇到的"救命指南"!

拒绝碎片化知识
  • 市面多数教程只讲DFT或ML,而实际课题需要:
    ✅ DFT算吸附能 → MD看扩散动力学 → GNN预测活性趋势

  • 本课程独创"三阶融合框架":真实课题驱动

  • 覆盖三大前沿应用场景:

    • 锂硫电池:从COP隔膜孔径设计到多硫化物催化转化

    • 压电催化:应变调控MoS₂极化→神经网络优化降解路径

    • 生物质转化:聚乙烯裂解模型迁移至葡萄糖催化

【学习的主要内容】

模块1:计算模拟基石
  • 分子动力学(MD)

    • 力场选择黄金法则(ReaxFF vs. PCFF)

    • 热力学系综避坑指南(NVT/NPT适用场景)

  • 第一性原理(DFT)

    • 电荷转移分析的3个关键指标(Bader/Mulliken/ESP)

    • 过渡态搜索的"爬山+微扰"复合算法

模块2:机器学习赋能
  • 特征工程圣经

    • 催化材料描述符四象限(电子/几何/热力学/动力学)

    • 用SHAP值解释模型:为什么Fe-V双原子催化剂活性最高?

  • 图神经网络实战

    • 用DGL构建原子图:边特征=键级,节点特征=电荷密度

    • 迁移学习技巧:小数据集也能高精度预测

模块3:工业级案例
  • 锂硫电池隔膜设计

    • DFT计算LiPSs吸附能 → MD模拟扩散系数 → 贝叶斯优化孔径分布

  • 污染物降解预测

    • 压电响应DFT计算 → 强化学习(DQN)优化反应路径

详细的大纲:机器学习赋能的多尺度材料模拟与催化设计前沿技术

要点

内容

基础理论与技术前沿方法

1. 分子动力学模拟(MD)与第一性原理计算(DFT)基础

(1) 分子动力学模拟(MD):力场选择(ReaxFF、PCFF)、热力学系综、积分算法、周期性边界条件设置

(2) 第一性原理计算(DFT):DFT框架、电荷转移分析、过渡态搜索、态密度(DOS)与能带结构分析

2. MD与DFT在能源材料中的应用介绍

(1) 锂硫电池体系:

双原子催化剂建模、异质结构电子离域、聚硫化物催化转化动力学

(2) 压电催化与高级氧化:

压电材料极化模拟、界面反应动力学

(3) 催化转化反应:

熔融催化机理、O₂活化路径

3. 机器学习(ML)在材料科学中的核心方法

(1) 监督学习

回归模型:随机森林、梯度提升树(预测Li⁺迁移能垒)

分类任务:SVM、神经网络(催化剂活性分类)

(2) 无监督学习

聚类分析:k-means识别催化活性位点

降维技术:PCA提取关键材料特征

(3) 特征工程

描述符构建:电子结构(能带宽度)、几何构型(孔径尺寸)、热力学参数(吸附能)

(4) 图神经网络(GNN)

原子图建模:Fe-V双原子催化剂的图结构表示

迁移学习:聚乙烯裂解模型迁移至葡萄糖催化体系

4. ML在能源材料科学与催化中的前沿应用介绍

(1) 锂硫电池优化:COP隔膜设计、GNN筛选催化剂

(2) 压电催化工艺优化:神经网络映射、强化学习(DQN)

(3) 催化升级反应加速:迁移学习模型、活性位点聚类

多尺度建模与数据驱动技术融合

1. 锂硫电池体系的多尺度模拟与ML优化

1.1. DFT与MD协同解析

(1) DFT计算步骤

构建双原子催化剂模型,计算LiPSs的吸附能,Bader电荷分析。

(2) ReaxFF-MD模拟动态过程:

硫正极-电解液界面的多硫化物扩散动力学。

案例实操1DFT计算LiPSs在Fe-V位点吸附构型,LAMMPS模拟扩散系数。

1.2. 机器学习驱动的隔膜与电极材料设计

(1) 特征工程:

COP隔膜的孔径、官能团类型(-NH₂)、Li⁺结合能

(2) 模型构建:随机森林预测Li⁺迁移能垒

(3) 模型应用与验证:对比实验验证、贝叶斯优化筛选

案例实操2基于scikit-learn构建COP材料的迁移能垒预测模型

2. 压电催化与高级氧化

2.1. 压电材料极化效应的DFT-MD建模

(1) DFT计算压电响应:应变下MoS2的压电常数(Quantum ESPRESSO)

(2) MD模拟界面反应: GROMACS模拟压电材料振动诱导的H₂O分解路径

案例实操3:计算应变对ZnO压电极化的影响

2.2. 机器学习预测污染物氧化降解反应速率

(1) 神经网络预测:输入污染物分子结构式,输出自由基氧化路径速率

(2) 强化学习:DQN算法优化产氢能耗比

案例实操4:基于PyTorch搭建高级氧化污染物氧化降解预测模型。

3. 催化转化反应加速

3.1. DFT-MD机理研究

(1) DFT计算裂解反应路径:金属-酸双功能催化剂的C-C键活化

(2) MD模拟熔融态传质过程:CVFF力场下聚乙烯在催化剂表面的吸附

案例实操5:用DFT模拟葡萄糖在H-ZSM-5表面的吸附构型

3.2. 图神经网络(GNN)催化剂设计

(1) 催化剂结构表征与图表示学习:

① 构建催化剂原子图,提取拓扑与电子特征

② 训练GNN模型预测芳烃产率

(2) 迁移学习与跨体系泛化:聚乙烯模型迁移至生物质催化

     案例实操6:使用DGL库构建GNN模型,预测催化剂的芳烃选择性。


适合谁学?

✔ 材料/化学方向研究生:快速产出模拟数据支撑论文
✔ 计算模拟工程师:解决企业研发中的催化剂筛选难题
✔ 跨学科研究者:物理/计算机背景想切入能源材料领域

你在材料模拟中遇到的最大挑战是什么?欢迎留言,我会挑选3个问题详细解答~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值