- 博客(40)
- 收藏
- 关注
原创 打通DFT-MD-相场-CPFEM:金属材料多尺度模拟全链路实战指南
摘要:本文系统介绍了金属材料多尺度计算模拟的技术路线,构建了从微观机理到宏观性能的集成工作流。内容涵盖密度泛函理论计算基础参数、分子动力学模拟变形机理、相场法预测组织演化、晶体塑性有限元分析宏观性能,以及铸造工艺优化应用。通过典型案例解析和前沿论文复现,展示了如何将电子结构-原子尺度-介观组织-宏观性能的模拟结果有效衔接,形成完整的科研闭环。该框架为材料计算研究者提供了从单点突破到系统集成的技术路径,具有重要的学术价值和工程指导意义。(149字)
2025-12-23 14:28:57
499
1
原创 两周,我搞懂了AI如何“计算”新材料:从金属合金到MOFs的科研实战体验
摘要:本文介绍了两大前沿专题,探讨计算化学与AI技术在材料研究中的应用。专题一聚焦MOFs材料,系统讲解从量子化学计算到图神经网络的全链条研究方法,涵盖CP2K结构优化、RASPA2吸附模拟及CGCNN性能预测等实战案例。专题二围绕金属材料智能设计,详细解析数据驱动的研发范式,包括Matminer描述符生成、主动学习工艺优化及SHAP可解释分析等技术。两个专题均采用真实材料体系案例,提供可复现的代码框架,特别适合希望将传统实验与计算/数据方法相结合的研究生。线上直播+录播的形式便于灵活学习,助力科研人员突破
2025-12-09 16:17:36
937
原创 拒绝纸上谈兵:记录我如何将深度学习代码变成可用的工程解决方案
面对高端装备智能化转型中对“仿真+AI”复合型人才的迫切需求,作为一名机械工程专业的研究生,我决定利用寒假时间,系统性地填补自身在智能诊断、可靠性设计等前沿领域的知识断层。本文将分享我为自己规划的深度学习路径,涵盖从故障诊断、结构优化到材料计算等多个核心方向的关键技术与实战案例,记录从理论到代码落地的完整思考。
2025-12-03 14:08:27
788
2
原创 调参调到头秃?我靠COMSOL+AI找到了声学超材料的「自动优化」模式
摘要:本文介绍了一种结合COMSOL仿真与AI算法的声学超材料研究新范式。通过构建"物理模型+数据驱动"的双核工作流,实现了从传统手动调参到智能优化的科研转型。内容涵盖能带分析、遗传算法优化、神经网络代理模型等关键技术,并展示了顶刊论文复现和工业案例实战的全流程。该方法显著提升了声学超材料的设计效率和优化精度,为相关领域研究者提供了一套可复制的智能科研解决方案。
2025-11-10 17:17:33
768
5
原创 别再做FDTD的“操作工”了!解锁Python,让AI替你搞科研
摘要:本文介绍了一种融合FDTD仿真与Python智能算法的超表面设计新范式。传统手动调参方法效率低下,而现代科研采用拓扑优化、遗传算法和深度学习等智能方法,能自动寻找最优设计。通过建立自动化工作流、掌握算法决策力及复现顶刊案例,研究者可实现从"操作工"到"设计师"的转变。该指南适用于超表面、纳米光子等领域的研究者,提供从基础到前沿的全套智能设计技术,包括联合仿真、逆向设计和多种优化算法实战。这种"物理仿真+计算智能"的新范式将大幅提升科研效率和创
2025-11-04 15:22:46
687
3
原创 研二学姐的深夜观察:实验室里,悄悄努力的人都在卷这些技能……
《AI+工业软件实战课程:助力科研加速的六项硬核技能》 这套专为研究生设计的实战课程,聚焦"AI+工业软件"交叉领域,包含六大科研加速器:1)智能故障诊断(1D-CNN处理振动信号);2)可靠性分析(ANSYS+Python联合仿真);3)疲劳寿命预测(CNN-LSTM混合模型);4-5)复合材料建模(生成式AI材料设计);6)智能水泥基(PINN+GAN应用)。课程特色:复现顶刊论文全流程、工业级技术栈、物理机理与AI融合,帮助解决科研效率低、技能断层等痛点,实现从传统方法到智能算法的
2025-10-29 13:50:25
610
3
原创 电池技术人的福音!当COMSOL遇上机器学习:从电化学仿真到智能BMS的全栈进阶指南
作为一名挣扎在毕业线上的电池方向研究生,我终于找到了把仿真和算法结合起来的系统学习路径
2025-10-16 13:35:54
815
3
原创 光学人的超级外挂!6大AI+光子学实战专题,从仿真到顶刊一气呵成!
还在为FDTD仿真跑不通、COMSOL设置老报错、创新点子枯竭而头秃吗?这波课程就是为你准备的救命稻草!
2025-10-14 16:15:27
622
3
原创 材料人的福音!5大AI+材料前沿技术实战课,科研/工程能力狂飙!
5大AI+材料专题课程助力研究生科研突破:1)AI-有限元融合的复合材料多尺度建模;2)AI赋能聚合物分子设计;3)机器学习优化水泥基复合材料;4)增材制造多物理场AI建模;5)金属疲劳寿命预测技术。课程由高校专家授课,包含ABAQUS二次开发、物理神经网络、生成式AI等前沿技术,通过代码实践+顶刊复现,帮助解决材料领域仿真难、数据乱、发刊慢等痛点。早鸟优惠中,组队学习可提升科研效率,构建AI+材料的核心竞争力。
2025-10-14 15:07:11
758
3
原创 学长干货:AI+材料科学四大前沿专题,科研人速来!
摘要:本文介绍了四个前沿科研专题课程,重点解决AI与传统工程学科的交叉应用难题。课程一将AI与有限元结合,实现复合材料多尺度建模自动化;课程二运用机器学习与生成式AI加速聚合物材料研发;课程三聚焦增材制造,融合物理仿真与神经网络进行工艺优化;课程四创新性地结合红外热像技术与深度学习预测金属结构疲劳寿命。这些课程均包含理论讲解、工业级软件实操和SCI论文复现实战,特别适合材料、机械、力学领域的研究者系统掌握"AI+工程"的前沿交叉技术,提升科研创新能力。
2025-09-01 13:48:25
1207
3
原创 《从有限元到深度学习:我的金属疲劳研究进阶之路》
《金属结构疲劳寿命预测与健康监测技术》培训为机械工程研究者提供了创新解决方案。该课程融合能量法、红外热像技术与深度学习,突破传统疲劳预测方法的局限。通过ABAQUS、MATLAB等软件实操教学,学员能掌握从有限元分析到裂纹扩展预测的全流程技能。课程特色在于:1)物理机理与数据智能双驱动;2)完整工业案例实践;3)提供核心算法代码。特别适合从事结构疲劳研究的硕博生和工程师,帮助提升预测精度35%以上,实现从"测温"到"读伤"的技术跨越。
2025-08-27 16:09:45
1252
3
原创 COMSOL+AI融合!锂电池多物理场仿真与智能BMS实战研修重磅
电池技术正迎来多学科交叉创新,AI与多物理场耦合仿真成为研发突破点。本次培训聚焦COMSOL电化学建模与AI智能BMS两大核心领域,涵盖锂离子电池多场耦合仿真、SOC/SOH智能估计、寿命预测及热失控预警等关键技术。课程采用"仿真+AI+电池管理"三位一体教学模式,配备12个工业级实战案例,由985高校教授与行业专家联合,助力学员掌握新能源领域最前沿的复合型技能。涵盖COMSOL与Python联合仿真、机器学习算法应用及实车大数据分析,直击企业核心技术痛点,培养"电
2025-08-12 15:15:57
904
4
原创 AI赋能复合材料与智能增材制造:前沿技术研修重磅
人工智能技术正在深刻变革复合材料与智能制造领域。本文系统介绍了AI在材料科学中的前沿应用,包括:1)基于AI-有限元融合的多尺度建模技术,涵盖复合材料性能预测、神经网络与有限元耦合方法;2)生成式AI和大语言模型在聚合物设计与性能预测中的应用;3)智能增材制造中的多物理场AI建模,重点解析物理信息神经网络(PINN)和不确定性量化方法;4)Fluent与深度学习结合的流体力学计算创新。课程内容紧密结合工业实践,整合ABAQUS、Fluent等工程软件与TensorFlow/PyTorch等AI框架,为科研人
2025-08-05 17:17:36
917
4
原创 AI有限元、聚合物复合材料多尺度建模材料性能预测及大模型应用实践,打破传统研发模式!
本文系统介绍了AI与有限元融合的复合材料多尺度建模与性能预测前沿技术。专题一聚焦软件配置、自动化建模、失效分析、仿真数据处理等实践,涵盖Python/Abaqus交互、神经网络模型构建及端到端系统开发。专题二探讨人工智能在聚合物材料领域的应用,包括数据预处理、特征选择、性能预测模型(DNN/CNN/GNN)、分子生成技术(VAE/GAN/Diffusion)及大语言模型应用。研究涉及应力应变曲线预测、逆向设计、高通量筛选等前沿方向,为材料智能设计提供创新方法论。
2025-08-01 17:21:01
258
3
原创 被导师狂喷电池预警做不好?这套AI+BMS实战方案让我逆袭了!
在尝试了无数论文中的算法都效果不佳后,我偶然发现了一套,简直打开了新世界的大门!
2025-07-08 10:58:01
208
3
原创 流体力学×深度学习:当Fluent遇到神经网络,计算效率提升300%的奥秘!
AI流体力学前沿速览:深度学习正在颠覆传统CFD!5天密集培训带你掌握AI+流体力学融合技术,突破计算效率、精度和场景创新三大瓶颈。课程涵盖从Navier-Stokes方程到Fluent高阶应用,再到深度学习核心技术栈(PINN、GAN等),提供Science级案例代码。适合科研人员及工程师,早鸟优惠限时开放。由985高校专家团队带领,助力实现4倍速的圆柱绕流模拟等突破性成果。
2025-06-16 15:04:16
565
原创 机器学习AI精准预测复合材料性能、材料结构设计优化;数据驱动加速新材料研发,百年难遇的组合打破科研壁垒!
人工智能与复合材料技术的融合正推动该领域快速发展。机器学习在复合材料研究中展现出巨大潜力,主要应用于材料设计优化、制造过程控制、性能预测与模拟、缺陷检测、寿命预测与健康管理以及数据驱动的材料发现等方面。具体技术包括线性回归、决策树、随机森林、支持向量机、神经网络等,这些方法在预测复合材料性能、优化材料结构等方面取得显著成果。此外,深度学习模型如多层感知机、卷积神经网络和物理信息神经网络也在复合材料研究中得到应用,为材料性能预测和结构优化提供了新的解决方案。这些技术的应用不仅提高了复合材料研究的效率和精度
2025-05-22 14:41:11
2758
4
原创 有限元竟然可以融合AI创造材料界的神话!
生成式AI的应用实例(VAE、Diffusion、LLM等、大模型的训练与应用示例(chatgpt为例)、预测聚合物粘度、从零开始手搓耐热高分子/高力学性能高分子机器学习筛选工作流的代码、聚合物结构表示、特征筛选、模型建立、模型优化和高通量筛选的掌握、主动学习、对比学习框架在聚合物科学问题中的实现、大语言模型实现聚合物性质预测—polyBERT和TransPolymer、VAE和大语言模型实现聚合物按需逆向设计、规模化应用前景等。以下是近期研究新方向,可参考下。
2025-04-08 11:04:30
461
2
原创 2025年机器人专业技术必修!运动学、动力学、优化与控制全攻略!
随着全球科技的迅猛发展,机器人技术在众多领域中的应用日益广泛,从制造业的自动化生产线到物流领域的智能搬运,再到医疗行业的辅助手术,机器人正以其高效、精准的特性改变着各行各业的运作模式。机器人技术的发展离不开多学科的交叉融合,包括机械工程、自动化、计算机科学、材料科学等。(2) 使用SolidWorks绘制3-dof球面并联机构的工作空间,并通过MATLAB进行分析。(2) 使用SolidWorks和MATLAB联合仿真,分析球面并联机构的刚度特性。这些方面可以去看一下。
2025-02-25 14:49:52
319
2
原创 #光子学小白#光子学与人工智能的跨界融合:从基础研究到产业应用 怎么学啊?
超构表面和超材料设计:机器学习被用于设计具有特定光学特性的超构表面和超材料,这些材料在光场调控中发挥着重要作用。3.光子神经网络:利用光子器件构建的神经网络可以进行快速的矩阵-向量运算,加速深度学习算法的执行。4.非线性光学与光子芯片:非线性光学材料和非厄米拓扑光子学为高性能片上处理方案提供了新的可能性,智能光子芯片在全光计算、信号处理和量子技术等领域具有广泛的应用前景。
2025-02-08 11:41:52
1080
原创 机器学习驱动油气田开发,应用岩土工程以及离散元pfc的案例还真是少见!
从基本物理模型构建到油气开发问题的复杂模拟,从数据驱动分析到工程问题的智能解决,深度学习正以前所未有的动力推动油气开发领域的革新。以上案例总体还是不错的!1.5.基于非结构PEBI网格的水驱、化学驱、致密油、页岩气开发中的流动规律数值模拟软件的研发与应用介绍:介绍系列工业软件,这些软件在解决生产制度优化、井网优化等关键技术难题中的应用。深度学习在测井方向的应用,既能做自动岩性、岩石类型、沉积微相识别,也可以做储层物性解释,特别是非常规油藏的测井解释,如裂缝孔隙度解释,合成曲线的生成等。
2024-12-30 15:46:00
1262
原创 岩土工程与深度学习蓬勃发展趋势,合力打造论文发表新方式
油气藏流体连续介质模拟及数值模拟方法油气藏开发中的提高采收率技术非常规油气藏的压裂设计和开发模拟基于PyTorch模块求解基于简单NumPy指令解决油气开发工程分类问题算例实现:Burgers方程;扩散方程等单相渗流方程求解基于深度学习的参数反演基于深度学习的自动反演方法利用残差神经网络反演储层中的渗透率K深度学习在油气开发中的应用:论文复现人工智能方法在油气田开发中的应用:进展与展望
2024-12-26 15:34:11
873
3
原创 机器学习辅助复合材料预测,性能管理优化创新材料,这种王炸般的组合,还真是大开眼界!
从复合材料性能的精确预测到复杂材料结构的智能设计,从数据驱动的材料结构优化到多尺度分析,人工智能技术正以其强大的数据处理能力和模式识别优势,推动复合材料领域的技术进步。材料科学、电力工业、航空航天科学与工程、有机化工、无机化工、建筑科学与工程、自动化技术、工业通用技术、汽车工业、金属学与金属工艺、机械工业、船舶工业等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。6.数据驱动的材料发现:通过分析大量的实验和模拟数据,机器学习有助于发现新的复合材料配方和结构,加速新材料的研发过程。
2024-08-19 17:13:13
2711
2
原创 反应力场lammps和reaxff,再加上智能计算模拟,你恐怕没见过这种绝妙组合
目前LAMMPS计算主要应用于:(1)研究金属材料的力学性能,LAMMPS可以模拟金属材料的塑性变形和断裂行为,从而研究金属材料的力学性能。(2)研究高分子材料的分子构象,LAMMPS可以模拟高分子材料的分子构象和分子运动,从而研究高分子材料的结构和性能。通过将机器学习算法与分子动力学模拟相结合,我们可以实现更快速、更准确的模拟,从而更深入地理解分子体系的性质和行为。实例操作:VMD中查看可视化的动态轨迹,计算密度分布,分子的MSD等,抽取轨迹的动能、势能、总能量等相关数据,对轨迹进行初步分析。
2024-08-01 13:53:29
2270
3
原创 智能电池管理,soc、soh、comsol锂电池仿真
深度挖掘人工智能与机器学习潜能,聚焦SOC与SOH估计、寿命预测,借力迁移学习、模型误差谱等先进方法,结合数据-物理融合模型与深度学习,前瞻技术趋势,如基于转移注意力机制的寿命预测。汽车工业、电力工业、材料科学、无机与有机化工、环境科学与资源利用、工业通用技术、自动化技术、冶金技术、金属学及金属工艺、物理学、安全科学与灾害防治、航空航天科学与工程、计算机软件及应用、船舶工业、动力工程等广泛领域的科研人员、工程师,以及相关行业从业者和跨领域研究人员
2024-07-31 16:23:44
1776
3
原创 comsol大爆发 ,你什么时候见过comsol声学+光电+智能超材料+fdtd的联合操作?
在深度学习与超材料融合下,可以实现超材料结构参数的优化、电磁响应的预测、拓扑结构的自动设计、相位的预测及结构筛选。材料科学、机械工程、计算机工程、建筑科学、土木工程、电子工程、航空航天、光电工程、物理学、微纳光学、超构材料、光通信、光电子器件及自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。3、通过多个场景案例的应用讲解,了解借助 COMSOL在理想或多物理场环境下分析、评估、预测医学、机械和通信等行业中涉及的器件的性能的方法,使设计满足当前和未来发展。
2024-07-22 16:20:27
1335
原创 流体力学cfd怎样学?
基于OpenFOAM的矩形柱体LES模拟案例基于python语言的CFD数据后处理运用Python处理实验数据基于人工智能技术的流场预测与重构方法运用UNet算法进行压力时序预测掌握基于多层感知机(MLP)的气动性能预测方法基于多层感知机(MLP)的民航超临界机翼气动性能预测
2024-07-18 16:18:52
289
4
原创 智能超材料设计, 惊讶住窝了!没见过,还真能这样设计吗?
深度学习可以帮助实现超材料结构参数的优化、电磁响应的预测、拓扑结构的自动设计、相位的预测及结构筛选。3、参加培训并通过考试的学员,可以获得:北京软研国际信息技术研究院培训中心颁发的。【注】费用提供用于报销的正规机打发票及盖有公章的纸质通知文件;变量为几何/材料参数的声子超材料数据批量自动计算方法。基于卷积神经网络的二维周期声子超材料能带曲线预测。专题一:深度学习驱动的智能超材料设计与应用专题。案例四:声学超材料声隐身、声隧穿、声强反射仿真。案例五:声学超材料负折射特性及三维能带仿真计算。
2024-07-17 16:25:30
286
原创 深度学习岩土工程+离散元PFC仿真应用=数字化智能岩土预测?噂都假嘟?
从基本物理模型的构建到岩土工程问题的复杂模拟,从数据驱动的分析到工程问题的智能解决,深度学习正以前所未有的动力推动岩土工程领域的革新。主要从事岩土工程数值模拟方法研究。地质学、建筑科学与工程、矿业工程、安全科学与灾害防治、公路与水路运输、水利水电工程、石油天然气工业、地球物理学、环境科学与资源利用、自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。3.3 COMMAND命令(命令结构、创建模型、状态监测与绘图、控制模拟过程、求解控制、状态查询、与FISH语言的混合使用等)
2024-06-19 14:00:54
1330
原创 智能流体模拟:OpenFOAM&Fluent的深度融合!
涵盖先进的计算方法(如伪谱法、CNN、GAN、Neural ODE、PINN等)、软件工具应用(Fluent软件、Python编程)、深度学习流场超分辨率、神经网络在湍流模拟中的应用(物理信息神经网络(PINN)和基于图神经网络(GNN))、神经网络在空气动力学中的应用、流动生成与可视化技术(反向追踪算法、Tecplot、Houdini等),全方位提升您的流体力学计算与应用能力。擅长领域:流体力学与人工智能的交叉科学,流场预测与重构,AI for CFD, 深度强化学习的气动优化。
2024-05-28 10:22:16
860
1
原创 光子器件逆向设计-机器学习深度学习驱动的光子学设计与应用,原来可以这么学?
电磁仿真软件与Python基础、OOP在电磁仿真和光子学设计中的应用、基于全局搜索算法的光子器件设计、基于机器学习算法的光子器件设计与性能预测、机器学习模型的训练和验证、基于梯度优化算法的光子结构设计、基于深度生成模型的光子结构逆向设计、多功能超表面设计、多算法融合的微纳光学系统端到端设计。【案例分析与实践】:基于直接二元搜索的片上偏振分束器设计、基于伴随变量算法的片上波分复用器设计、基于VAE的自由形状超表面结构设计、全息超表面设计、基于多算法融合的多功能超表面设计等。
2024-05-22 10:37:16
1532
4
原创 深度学习驱动的流体力学计算与应用
来自全球顶尖大学香港科技大学,博士,具有丰富的流体力学工作经验,包括实验流体力学,计算流体动力学(CFD),近年来发表论文10余篇,申请专利三项。擅长领域:流体力学与人工智能的交叉科学,流场预测与重构,AI for CFD, 深度强化学习的气动优化。涵盖经典流体力学、机器学习、深度学习、实验流体力学、计算流体动力学、时空超分辨率、深度强化学习等核心知识,全方位提升您的流体力学计算与应用能力。如未收到请及时电话咨询。机器学习的基础概念,熟悉并掌握一系列常见及经典的机器学习算法,为后续课程打下坚实基础。
2024-04-16 18:30:04
2134
1
原创 abaqus复合材料仿真建模与应用专题
4、参加培训并通过考试的学员,可以获得:北京软研国际信息技术研究院培训中心颁发的《复合材料建模技术与应用工程师》专业技能结业证书。7.2.基于MATLAB与Python的参数化建模与脚本编程(实例)1.3.复合材料层结构建模方法(壳单元、连续壳单元及多层实体单元)3.2.基于cohesive单元的分层/界面损伤扩展模拟(实例)5.2.颗粒增强金属基复合材料结构建模、胞元分析技术(实例)5.3.短纤维增强复合材料结构建模、胞元分析技术(实例)7.4.基于接口子程序的材料弹塑性与粘弹性分析(实例)
2024-04-03 13:34:03
701
1
原创 lammps分子动力学+gaussian量子化学+reaxff反应力场 | 如何快速掌握啊?
石墨烯、金属材料、纳米流体&热传导模拟、材料切削、夹层结构、离位损伤模拟、MOFs材料建模。基础入门、分析建模、实例操作(石墨烯生长、质子转移)、CP2k入门、过渡态搜索、力场开发。密度泛函、溶剂模型、势能面、反应能垒、各类光谱计算、激发态、高精度多尺度。专题二:guassian量子化学。专题一:lammps分子动力学。专题三:ReaxFF反应力场。
2023-08-29 11:04:51
352
4
原创 刚柔软机器人结构仿真分析与优化设计?你学会了吗?!
软体机器人的研究涉及软材料、机构设计、仿生学、微电子、控制和计算机科学等多个学科。3、软体结构在实验中制作的方法及技巧:柔性约束软体气动驱动器、软体机械臂的制作、颗粒阻塞/层阻塞(jamming)变刚度结构的制作、刚性约束刚软混合气动驱动器、仿尺蠖软体机器人的制作。
2023-05-19 10:37:13
986
7
原创 机器学习材料性能预测与材料基因工程如何整?
二、进阶阶段需要深度学习神经网络、经典机器学习模型、材料基因工程入门与实战、图神经网络与实践、机器学习+Science五个模块,还需要结合案例实践(神经网络在催化领域的应用、预测杂化钙钛矿带隙、有机太阳能电池材料快速筛选、团簇结构数据库构建、同素异形体结构数据库构建、材料指纹和势函数生成、描述符的向量化生成与特征、图神经网络预测无机材料的性能、分子理化性质的预测、量子点发光材料色温的预测、半导体材料物理性质预测、二维材料的性质预测等)这些必不可少。所以还是有很大的挑战的呢。
2022-12-05 14:01:25
819
7
原创 【学四天,复合材料20个案例带你如何玩转ABAQUS!】
ABAQUS基于丰富的单元库,能够求解广泛领域的线性和非线性问题,包括静态分析、动力分析、结构的热响应分析以及其他复杂非线性耦合物理场的分析。ABAQUS被广泛地认为是功能最强的有限元软件,非常适合分析复杂的复合材料力学结构系统。10.基于MATLAB的变角度铺丝变刚度复合材料结构建模与分析。11.基于python语言的复合材料加筋板参数化建模实例。6.颗粒增强金属基复合材料结构建模、拉伸过程及失效分析。7. 短纤维增强复合材料结构建模、胞元分析技术。五、ABAQUS复合材料静力分析及案例实践。
2022-10-17 17:50:17
1350
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅