树的性质相关题解
(1)一棵满二叉树中有127个结点,其中叶结点有多少个?
- 根据总结点数计算出树的高度,
-1=127,解得k=7
- 叶子结点也就是第7层上的结点数,
(2)一棵高度为8的完全二叉树至少有多少个叶结点?
- 至少,就是最下面一层仅有一个结点
- 对于完全二叉树而言,高度为8,则第7层肯定是满的;
- 第7层上的结点数为
个
- 这64个结点,有63个为叶子结点,有1个结点有一个左孩子,这个左孩子就最下层的叶子结点,则叶子结点数=63+1=64个
(3)已知一棵完全二叉树的第6层(根为第1层)有8个叶结点,则该完全二叉最多有多少个结点?
- 对于完全二叉树来说,叶结点可能在最下面两层;
- 这个二叉树可能有6层,也可能有7层
- 当k=6时,前5层是满的,该完全二叉树一共有
个结点
- 当k=7时,叶结点在第6层,也就是倒数第2层,先计算出第6层上共有多少结点:
个结点
- 在这32个结点中,其中8个叶结点,叶结点无孩子,其余的32-8=24个结点有孩子,每个结点有2个孩子,共有24*2=48个孩子,这48个孩子在第7层,是叶结点;
- 总的结点数就等于前6层的结点总数+第7上的48个叶结点
(4)
(4)在一棵度为 3 的树中,度为 2 的结点个数是 1,度为 0 的结点个数是 6,则度为 3 的结点个数是 __
在一棵树中分支数B和结点数n的关系为:B+1=n
设树中度为3的结点数为x,则
B=2*1+3*x
(2*1+3*x)+1=1+6+x 解得x=2
(5)一棵二叉树中有7个叶子节点和5个单分支节点,其总共有( )个节点
由于是一棵二叉树,结点的最大度为2
根据已知条件n0=1,n1
根据二叉树的性质n0=n2+1,可知n2=7-1=6
n0+n1+n2=7+5+6=18
(6)[2018真题]设一棵非空完全二叉树T的所有叶结点均位于同一层,且每个非叶结点都有2个子结点,若T有k个叶结点,则T的结点总数是( )
解:根据题目中给的已知条件,叶结点位于同一层,每个非叶结点有2个子结点 可以判定该树为满二叉树。
若该二叉树的高度为h,则叶结点k=2^(h-1) -->2^h=2*2^(h-1)=2k
高度为h的满二叉树的结点总数为2^h-1=2k-1