- 博客(5)
- 资源 (2)
- 收藏
- 关注
原创 贝叶斯算法原理
贝叶斯算法与简单概率论明确:贝叶斯算法是解决什么问题的?解决逆向问题!eg正向概率:袋子里N个白球,M个黑球,伸手进摸出黑球的概率?逆向概率:事先不清楚黑白球比例,闭眼摸出一个球出来,观察颜色,求带内球颜色占比?eg60%男生,40%女生,男生穿长裤,女生一半长裤一半裙子。正向概率:随机选一个学生,这个学生穿长裤的概率?逆向概率:走来一个穿长裤的学生,不知道其性别,求这个学生是女生...
2019-01-17 15:41:15 625
原创 集成算法与随机森林
集成算法与随机森林目的:让机器学习效果更好,一个人决策树效果不够,那就一群树。Bagging训练多个分类器取均值全称:Bootstrap aggregation(并行训练一堆分类器(树))最典型代表:随机森林随机:数据采样随机,特征选择随机。森林:很多个决策树并行放在一起,同时处理。同一个数据集构造3个树数据随机:选60%数据,有放回的。ABC都如此(随机选择)特征随机:选...
2019-01-17 10:32:51 213
原创 决策树实现
树模型参数解释criterion gini or entropy : 选择决策树剪枝使用gini系数或者是熵值法splitter best or random: 选择在所有特征中找最佳切分点或在部分特征中找最佳切分点max_depth:对决策树深度做限制(预剪枝)min_samples_split: 判断是否叶子节点继续进行分裂,如果小于这个值如10,节点样本数只有9了,就不会再继续分裂...
2018-10-21 11:31:23 554
原创 决策树算法
决策树算法简介1.什么是决策树?从根节点一步步走向叶子节点(此过程叫决策),形成了决策树。所有的数据都会进入叶子节点,构造完成决策树后,决策树可以用于分类或回归。例如根节点:第一个选择的分类节点。非叶子节点与分支:中间过程。叶子节点:决策过程。在此图中的年龄小于15分类判断是根节点,是否男性属于非叶子节点与分支,三个最终的图片都属于叶子节点。那么叶子节点是否是越多越好呢?不是...
2018-10-20 11:06:13 397
原创 小觅的简单代码程序实现
`from future import print_functionimport os import sysPY_DIR = os.path.dirname(os.path.dirname(os.path.abspath(file))) LIB_DIR = os.path.join(PY_DIR, ‘_install/lib’) for root, dirs, files i...
2018-07-30 11:16:36 1471 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人