决策树实现

本文介绍了决策树的实现,包括参数如criterion、splitter、max_depth等的解释,以及如何限制叶子节点和最大深度。同时强调了库函数导入的注意事项,如使用pydotplus查看树结构,注意模块导入路径。内容还涵盖了使用GridSearchCV进行特征选择,通过调整max_depth、min_samples_split和n_estimators等参数来寻找最佳预测效果。最后,文章探讨了如何通过训练集和测试集评估决策树和随机森林的性能。
摘要由CSDN通过智能技术生成

树模型参数解释

criterion gini or entropy : 选择决策树剪枝使用gini系数或者是熵值法
splitter best or random: 选择在所有特征中找最佳切分点或在部分特征中找最佳切分点
max_depth:对决策树深度做限制(预剪枝)
min_samples_split: 判断是否叶子节点继续进行分裂,如果小于这个值如10,节点样本数只有9了,就不会再继续分裂
min_samples_leaf: 限制叶子节点最小样本数
max_leaf_nodes :限制最大叶子节点个数
n_estimators :要建立树的个数

库函数导入注意事项


from sklearn.externals.six import StringIO
import matplotlib.pyplot as plt
import pandas as pd
import pydotplus
from sklearn.model_selection import train_test_split
from sklearn.datasets.california_housing import fetch_california_housing
from IPython.display import Image
from sklearn.model_selection import GridSearchCV
from sklearn import tree

注意pydotplus库用于查看建立的树文件(虽然我没用到),StringIO库用于传递给输出树图参数(必写),另外导入GridSearchCVtrain_test_split必须从model_selection中进行导入操作,而不能从cross——validation或者gridxx中导入,因为这样会存在由于更新导致的冲突问题。

housing = fetch_california_housing()
print(housing.DESCR)

print(housing.data.shape)
决策树实现可以使用Java编程语言。在Java中,有许多开源的机器学习库可以帮助实现决策树模型,例如Weka、Apache Spark MLlib和J48等。这些库提供了丰富的功能和API,可以用于构建、训练和评估决策树模型。 其中,Weka是一个非常流行的机器学习库,它提供了各种算法和工具,包括决策树算法。使用Weka,你可以通过加载数据集、选择合适的属性和设置参数来构建决策树模型。然后,你可以使用训练集对模型进行训练,并使用测试集对模型进行评估。最后,你可以使用训练好的模型进行预测。 以下是一个使用Weka库实现决策树的简单示例代码: ```java import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.classifiers.trees.J48; public class DecisionTreeExample { public static void main(String\[\] args) throws Exception { // 加载数据集 DataSource source = new DataSource("path/to/dataset.arff"); Instances data = source.getDataSet(); // 设置类别属性 data.setClassIndex(data.numAttributes() - 1); // 构建决策树模型 J48 tree = new J48(); tree.buildClassifier(data); // 输出决策树模型 System.out.println(tree); } } ``` 在上述代码中,你需要将"path/to/dataset.arff"替换为你的数据集文件的路径。然后,你可以使用J48类构建决策树模型,并使用buildClassifier方法对数据进行训练。最后,你可以使用System.out.println方法输出决策树模型的信息。 请注意,这只是一个简单的示例,实际的决策树实现可能需要更多的步骤和参数设置。你可以根据具体的需求和数据集进行调整和扩展。 #### 引用[.reference_title] - *1* *2* *3* [ID3算法决策树(java实现)](https://blog.csdn.net/kiround/article/details/127018844)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值