5.LeetCode- 最长回文子串

本文介绍了如何解决LeetCode上的‘最长回文子串’问题,提供了三种不同的解题思路:动态规划、扩展中心和Manacher算法。通过动态规划,利用状态转移方程找出所有回文子串中长度最长的一个。扩展中心方法则是以每个字符为中心,向两边扩展判断回文。Manacher算法则解决了奇偶长度回文串的问题,提高了效率。
摘要由CSDN通过智能技术生成

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = "babad"

输出:"bab"

解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"

输出:"bb"

提示:

  • 1 <= s.length <= 1000

  • s 仅由数字和英文字母组成

思路 1:动规

对于一个子串而言,如果它是回文串,并且长度大于 2,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串ababa,如果我们已经知道bab是回文串,那么ababa 一定是回文串,这是因为它的首尾两个字母都是 a。

根据这样的思路,我们就可以用动态规划的方法解决本题。我们用 P(i,j) 表示字符串 s 的第 i 到 j个字母组成的串(下文表示成 s[i:j])是否为回文串:

其他情况

  • S[i,j]本身部署一个回文串

  • i>j,此时s[i,j]本身不合法

动态规划状态转移方程式

只有 s[i+1:j−1]是回文串,并且 s 的第 i 和 j 个字母相同时,s[i:j]才会是回文串。

最终的答案即为所有 P(i,j)=true中j−i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。

   public static String longestPalindrome(String s) {
               int len = s.length();
        if (len <2){
            return s;
        }
        int maxLen = 1;
        int begin = 0;
        // dp[i][j]标识S[i..j]是否为回文串
        boolean[][] dp = new boolean[len][len];
        for (int i = 0; i < len; i++) {
            dp[i][i] = true;
        }

        char[] charArray = s.toCharArray();
        //递推开始 dp[i][j]标识S[i..j]是否为回文串
        //枚举子串长度
        for (int l=2;l<=len;l++){
            //枚举左边界,左边界的上限设置可以宽松一些
            for (int i = 0; i < len; i++) {
                int j = l+i-1;//
                // 如果右边界越界 就退出当前循环
                if (j>=len){
                    break;
                }


                if (charArray[i] == charArray[j]){
                    if (l == 2){
                        dp[i][j] = true; //长度为2时候  既为回文
                    }else{
                        dp[i][j] = dp[i+1][j-1];//否则和dp[i+1][j-1]一样
                    }
                }else {
                    dp[i][j] = false;
                }

                // 只要 dp[i][j] == true 成立,就表示子串 s[i..j] 是回文,此时记录回文长度和起始位置
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substring(begin,begin+maxLen); 
    }

时间复杂度和空间复杂度都为O(n²)

思路 2:扩展中心

回文串一定是对称的,所以我们可以每次循环选择一个中心,进行左右扩展,判断左右字符是否相等即可。奇/偶数的字符串对应的中心不同,故有2n-1个中心。

   public String longestPalindrome(String s) {
        if (s == null || s.length() < 1) {
            return "";
        }
        int start = 0, end = 0;
        for (int i = 0; i < s.length(); i++) {
            //奇偶不同情况
            int len1 = expandAroundCenter(s, i, i);
            int len2 = expandAroundCenter(s, i, i + 1);
            int len = Math.max(len1, len2);
            //获取开始
            if (len > end - start) {
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        return s.substring(start, end + 1);
    }

    //中心拓展
    public int expandAroundCenter(String s, int left, int right) {
       //当左边界大于等于0且右边界小于字符长度,且左边界元素等于右边界元素时 向外拓展 直到最大回文串 返回长度
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            --left;
            ++right;
        }
        return right - left - 1;
    }

时间复杂度O(n²),空间复杂度都为O(1)

思路 3:Manacher 算法

首先我们解决下奇数和偶数的问题,在每个字符间插入 "#",并且为了使得扩展的过程中,到边界后自动结束,经过处理,字符串的长度永远都是奇数了。偶数里面有奇数个空位,奇数里面有偶数个空位。

当在位置 i 开始进行中心拓展时,我们可以先找到 i 关于 j 的对称点 2 * j - i。那么如果点 2 * j - i 的臂长等于 n,我们就可以知道,点 i 的臂长至少为 min(j + length - i, n)。那么我们就可以直接跳过 i 到 i + min(j + length - i, n) 这部分,从 i + min(j + length - i, n) + 1 开始拓展。

    public String longestPalindrome(String s) {
        int start = 0, end = -1;
        StringBuffer t = new StringBuffer("#");
        for (int i = 0; i < s.length(); ++i) {
            t.append(s.charAt(i));
            t.append('#');
        }
        t.append('#');
        s = t.toString();

        List<Integer> arm_len = new ArrayList<Integer>();
        int right = -1, j = -1;
        for (int i = 0; i < s.length(); ++i) {
            int cur_arm_len;
            if (right >= i) {
                int i_sym = j * 2 - i;
                int min_arm_len = Math.min(arm_len.get(i_sym), right - i);
                cur_arm_len = expand(s, i - min_arm_len, i + min_arm_len);
            } else {
                cur_arm_len = expand(s, i, i);
            }
            arm_len.add(cur_arm_len);
            if (i + cur_arm_len > right) {
                j = i;
                right = i + cur_arm_len;
            }
            if (cur_arm_len * 2 + 1 > end - start) {
                start = i - cur_arm_len;
                end = i + cur_arm_len;
            }
        }

        StringBuffer ans = new StringBuffer();
        for (int i = start; i <= end; ++i) {
            if (s.charAt(i) != '#') {
                ans.append(s.charAt(i));
            }
        }
        return ans.toString();
    }

    public int expand(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            --left;
            ++right;
        }
        return (right - left - 2) / 2;
    }
根据提供的引用内容,有三种方法可以解决LeetCode上的最长回文子串问题。 方法一是使用扩展中心法优化,即从左向右遍历字符串,找到连续相同字符组成的子串作为扩展中心,然后从该中心向左右扩展,找到最长的回文子串。这个方法的时间复杂度为O(n²)。\[1\] 方法二是直接循环字符串,判断子串是否是回文子串,然后得到最长回文子串。这个方法的时间复杂度为O(n³),效率较低。\[2\] 方法三是双层for循环遍历所有子串可能,然后再对比是否反向和正向是一样的。这个方法的时间复杂度也为O(n³),效率较低。\[3\] 综上所述,方法一是解决LeetCode最长回文子串问题的最优解法。 #### 引用[.reference_title] - *1* [LeetCode_5_最长回文子串](https://blog.csdn.net/qq_38975553/article/details/109222153)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Leetcode-最长回文子串](https://blog.csdn.net/duffon_ze/article/details/86691293)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LeetCode 第5题:最长回文子串(Python3解法)](https://blog.csdn.net/weixin_43490422/article/details/126479629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值