给你一个字符串 s,找到 s 中最长的回文子串。
如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
提示:
1 <= s.length <= 1000
s 仅由数字和英文字母组成
思路 1:动规
对于一个子串而言,如果它是回文串,并且长度大于 2,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串ababa,如果我们已经知道bab是回文串,那么ababa 一定是回文串,这是因为它的首尾两个字母都是 a。
根据这样的思路,我们就可以用动态规划的方法解决本题。我们用 P(i,j) 表示字符串 s 的第 i 到 j个字母组成的串(下文表示成 s[i:j])是否为回文串:
其他情况
S[i,j]本身部署一个回文串
i>j,此时s[i,j]本身不合法
动态规划状态转移方程式
只有 s[i+1:j−1]是回文串,并且 s 的第 i 和 j 个字母相同时,s[i:j]才会是回文串。
最终的答案即为所有 P(i,j)=true中j−i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。
public static String longestPalindrome(String s) {
int len = s.length();
if (len <2){
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j]标识S[i..j]是否为回文串
boolean[][] dp = new boolean[len][len];
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
char[] charArray = s.toCharArray();
//递推开始 dp[i][j]标识S[i..j]是否为回文串
//枚举子串长度
for (int l=2;l<=len;l++){
//枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < len; i++) {
int j = l+i-1;//
// 如果右边界越界 就退出当前循环
if (j>=len){
break;
}
if (charArray[i] == charArray[j]){
if (l == 2){
dp[i][j] = true; //长度为2时候 既为回文
}else{
dp[i][j] = dp[i+1][j-1];//否则和dp[i+1][j-1]一样
}
}else {
dp[i][j] = false;
}
// 只要 dp[i][j] == true 成立,就表示子串 s[i..j] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin,begin+maxLen);
}
时间复杂度和空间复杂度都为O(n²)
思路 2:扩展中心
回文串一定是对称的,所以我们可以每次循环选择一个中心,进行左右扩展,判断左右字符是否相等即可。奇/偶数的字符串对应的中心不同,故有2n-1个中心。
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) {
return "";
}
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
//奇偶不同情况
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
//获取开始
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
//中心拓展
public int expandAroundCenter(String s, int left, int right) {
//当左边界大于等于0且右边界小于字符长度,且左边界元素等于右边界元素时 向外拓展 直到最大回文串 返回长度
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
--left;
++right;
}
return right - left - 1;
}
时间复杂度O(n²),空间复杂度都为O(1)
思路 3:Manacher 算法
首先我们解决下奇数和偶数的问题,在每个字符间插入 "#",并且为了使得扩展的过程中,到边界后自动结束,经过处理,字符串的长度永远都是奇数了。偶数里面有奇数个空位,奇数里面有偶数个空位。
当在位置 i 开始进行中心拓展时,我们可以先找到 i 关于 j 的对称点 2 * j - i。那么如果点 2 * j - i 的臂长等于 n,我们就可以知道,点 i 的臂长至少为 min(j + length - i, n)。那么我们就可以直接跳过 i 到 i + min(j + length - i, n) 这部分,从 i + min(j + length - i, n) + 1 开始拓展。
public String longestPalindrome(String s) {
int start = 0, end = -1;
StringBuffer t = new StringBuffer("#");
for (int i = 0; i < s.length(); ++i) {
t.append(s.charAt(i));
t.append('#');
}
t.append('#');
s = t.toString();
List<Integer> arm_len = new ArrayList<Integer>();
int right = -1, j = -1;
for (int i = 0; i < s.length(); ++i) {
int cur_arm_len;
if (right >= i) {
int i_sym = j * 2 - i;
int min_arm_len = Math.min(arm_len.get(i_sym), right - i);
cur_arm_len = expand(s, i - min_arm_len, i + min_arm_len);
} else {
cur_arm_len = expand(s, i, i);
}
arm_len.add(cur_arm_len);
if (i + cur_arm_len > right) {
j = i;
right = i + cur_arm_len;
}
if (cur_arm_len * 2 + 1 > end - start) {
start = i - cur_arm_len;
end = i + cur_arm_len;
}
}
StringBuffer ans = new StringBuffer();
for (int i = start; i <= end; ++i) {
if (s.charAt(i) != '#') {
ans.append(s.charAt(i));
}
}
return ans.toString();
}
public int expand(String s, int left, int right) {
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
--left;
++right;
}
return (right - left - 2) / 2;
}