azure机器学习_使用Azure ML Studio的Azure机器学习简介

本文介绍了如何使用Azure Machine Learning Studio创建和管理机器学习模型。内容涵盖MLOPS概念,工作室的功能,如数据上传、预处理和模型开发,以及如何在不同环境中部署和消费模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

azure机器学习

介绍 (Introduction)

Let us see how Azure ML studio can be used to create machine learning models and how to consume them in this series. As we discussed during the data mining series, we identified the challenges in the predictions in data. In the Azure Machine learning platform, machine learning workflows can be defined in easy scale models in the cloud environment. Today will be looking at how datasets can be uploaded.

让我们看看如何使用Azure ML studio创建机器学习模型,以及如何在本系列文章中使用它们。 正如我们在数据挖掘系列中讨论的那样,我们确定了数据预测中的挑战。 在Azure机器学习平台中,可以在云环境中的轻松规模模型中定义机器学习工作流。 今天将研究如何上传数据集。

MLOPS (MLOPS)

DevOps is a very familiar tool among IT practitioners nowadays so the development and operation teams can get-together and work to the success of the project. Similarly, in Machine Learning, there are different teams such as data scientists, data engineers, and development teams working on machine learning projects to work on models and consuming them. Azure machine learning can utilize the MLOps model to build high quality and scalable machine learning models that are equivalent to the DevOps.

DevOps是当今IT从业人员非常熟悉的工具,因此开发和运营团队可以齐心协力,为项目的成功而努力。 同样,在机器学习中,有不同的团队,例如数据科学家,数据工程师和开发团队,负责机器学习项目,以处理模型并使用它们。 Azure机器学习可以利用MLOps模型来构建与DevOps等效的高质量和可扩展机器学习模型。

Further, if you look at the machine learning development life cycle, you need multiple tasks such as,

此外,如果您查看机器学习开发生命周期,则需要执行多个任务,例如,

  • Pre-processing data

    预处理数据
  • Preparing data

    准备资料
  • Developing candidate ML models

    开发候选ML模型
  • Evaluating candidate ML models

    评估候选ML模型
  • Choosing an ML model

    选择ML模型
  • Deploying the selected Machine learning model

    部署选定的机器学习模型
  • Consuming the ML model

    消耗机器学习模型

Azure Machine Learning will provide different users at different tasks in the development life cycle of machine learning.

Azure机器学习将在机器学习的开发生命周期中为不同的用户提供不同的任务。

Azure机器学习 (Azure Machine Learning )

To facilitate all the above tasks, you can use the Azure Machine Learning Studio which is the browser-based workbench for Machine Learning. You can create your free account to try out many features of the Azure Machine Learning Platform. For example, in the free account maximum storage is 10 GB whereas there is no limit in the paid account. Apart from the storage limitation, the free account will execute on a single node and the paid account is running on multiple nodes. Apart from those limitations, the free account does not require an Azure subscription.

为了完成上述所有任务,您可以使用Azure Machine Learning Studio,这是用于机器学习的基于浏览器的工作台。 您可以创建一个免费帐户来试用Azure机器学习平台的许多功能。 例如,在免费帐户中,最大存储量为10 GB,而在付费帐户中则没有限制。 除存储限制外,免费帐户将在单个节点上执行,而付费帐户将在多个节点上运行。 除了这些限制,免费帐户不需要Azure订阅。

You can look at the details of limitations from the following URL as these limits will change from time to time:

您可以从以下网址查看限制的详细信息,因为这些限制会不时更改:

https://azure.microsoft.com/en-us/pricing/details/machine-learning-studio/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值