azure机器学习
介绍 (Introduction)
Let us see how Azure ML studio can be used to create machine learning models and how to consume them in this series. As we discussed during the data mining series, we identified the challenges in the predictions in data. In the Azure Machine learning platform, machine learning workflows can be defined in easy scale models in the cloud environment. Today will be looking at how datasets can be uploaded.
让我们看看如何使用Azure ML studio创建机器学习模型,以及如何在本系列文章中使用它们。 正如我们在数据挖掘系列中讨论的那样,我们确定了数据预测中的挑战。 在Azure机器学习平台中,可以在云环境中的轻松规模模型中定义机器学习工作流。 今天将研究如何上传数据集。
MLOPS (MLOPS)
DevOps is a very familiar tool among IT practitioners nowadays so the development and operation teams can get-together and work to the success of the project. Similarly, in Machine Learning, there are different teams such as data scientists, data engineers, and development teams working on machine learning projects to work on models and consuming them. Azure machine learning can utilize the MLOps model to build high quality and scalable machine learning models that are equivalent to the DevOps.
DevOps是当今IT从业人员非常熟悉的工具,因此开发和运营团队可以齐心协力,为项目的成功而努力。 同样,在机器学习中,有不同的团队,例如数据科学家,数据工程师和开发团队,负责机器学习项目,以处理模型并使用它们。 Azure机器学习可以利用MLOps模型来构建与DevOps等效的高质量和可扩展机器学习模型。
Further, if you look at the machine learning development life cycle, you need multiple tasks such as,
此外,如果您查看机器学习开发生命周期,则需要执行多个任务,例如,
- Pre-processing data 预处理数据
- Preparing data 准备资料
- Developing candidate ML models 开发候选ML模型
- Evaluating candidate ML models 评估候选ML模型
- Choosing an ML model 选择ML模型
- Deploying the selected Machine learning model 部署选定的机器学习模型
- Consuming the ML model 消耗机器学习模型
Azure Machine Learning will provide different users at different tasks in the development life cycle of machine learning.
Azure机器学习将在机器学习的开发生命周期中为不同的用户提供不同的任务。
Azure机器学习 (Azure Machine Learning )
To facilitate all the above tasks, you can use the Azure Machine Learning Studio which is the browser-based workbench for Machine Learning. You can create your free account to try out many features of the Azure Machine Learning Platform. For example, in the free account maximum storage is 10 GB whereas there is no limit in the paid account. Apart from the storage limitation, the free account will execute on a single node and the paid account is running on multiple nodes. Apart from those limitations, the free account does not require an Azure subscription.
为了完成上述所有任务,您可以使用Azure Machine Learning Studio,这是用于机器学习的基于浏览器的工作台。 您可以创建一个免费帐户来试用Azure机器学习平台的许多功能。 例如,在免费帐户中,最大存储量为10 GB,而在付费帐户中则没有限制。 除存储限制外,免费帐户将在单个节点上执行,而付费帐户将在多个节点上运行。 除了这些限制,免费帐户不需要Azure订阅。
You can look at the details of limitations from the following URL as these limits will change from time to time:
您可以从以下网址查看限制的详细信息,因为这些限制会不时更改:
https://azure.microsoft.com/en-us/pricing/details/machine-learning-studio/