我的创作纪念日 机缘实战项目中的经验分享也是一个记录和学习,通过文章进行技术交流有助于我们更进一步收获获得了1545粉丝的关注获得了222赞,139658阅读量憧憬希望以后可以创作更多、更丰富的内容,分享给大家,也用来和大家交流!...
一行代码实现“数据→热力图” 目录数据准备绘图准备一行绘制热力图数据准备import numpy as npimport seaborn as snsdf = pd.DataFrame(np.array(data), index=['0', '1', '2', '3','4','5','6','7','8'], columns=["P","Q","QN","TE","R","DE","S","WD","W"])将你的数据导入为一个数组或
土木建筑中为什么假定结构阻尼比?振型分解法计算的对应频率是什么? 目录阻尼的实质阻尼的表达方式个人理解阻尼的实质阻尼是反映结构体系振动过程中的能量耗散。这种能量的耗散是复杂的、多角度的很难通过简单的手段来得到阻尼的表达方式粘滞阻尼,假定阻尼力与速度成正比滞回阻尼,假定应力—应变间存在相位差,振动中发生耗能。特点是可以不随频率而改变的振型阻尼比个人理解平时假定的阻尼比就是用来计算结构的阻尼的,是根据一定的实测数据和试验研究给出的一个经验值。阻尼就是用来反映结构在振动的过程中受到的各种阻碍。阻尼与内外因素均有关系固有频率也称为自然频率(
一句话理解:过拟合和欠拟合 目录过拟合欠拟合理想情况: 找到偏差和方差都很小的情况,即收敛且误差较小目前在许多任务中仍经常会出现过拟合等问题,还没有找到一个十分通用、有效的解决方法。过拟合过拟合(over-fitting):所建的机器学习模型在训练集中表现得过于优越,而在验证集和测试集中表现不佳。过拟合就是训练的时候效果很好(除了有用的特征外,模型还学到了很多没用的特征),但是在测试样本上的效果就很差(没用的特征干扰了模型的预测)。为什么会产生过拟合?一般是因为参数过多,后者样本过少,为了降低loss所致。总之就是参数
想在Word中查找所有中文(西文)怎么办? 以下查找命令供参考:所有小写英文字母[a-z]所有大写英文字母[A-Z]所有西文字符[^1-^127]所有中文汉字和中文标点[!^1-^127]所有非数字字符[!0-9]使用以上查找命令,必须点查找对话框的高级(2007以上版本)或更多(2003),勾选“使用通配符"。...
ECharts ECharts是一款基于JavaScript的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。ECharts最初由百度团队开源,并于2018年初捐赠给Apache基金会,成为ASF孵化级项目。[1]
VIF检验相关性 VIF可以用来度量多重共线性问题,VIFj=11−Rj2\quad \mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}}VIFj=1−Rj21式子中,Rj2R_{j}^{2}Rj2是第jjj个变量在所有变量上回归时的确定系数。如果VIF过大(比如大于5或10),则意味着存在多重共线性问题。#数据df = pd.read_excel(io='数据.xlsx', sheet_name=0, usecols=range(1,5))# 务必注意:一定要加上常数项,#如果没
Python绘制等高线图 plt.contour(X,Y,Z,levels=2)X,Y : 坐标X和Y必须都是2-D,且形状与Z相同或者它们必须都是1-d,这样len(X)=M是Z中的列数,len(Y)=N是Z中的行数。Z : array-like(N,M),绘制轮廓的高度值levels: int或类似数组,确定轮廓线/区域的数量和位置。plt.contourf(X,Y,Z,levels=2)...
pd.read_excel读取excel文件的行、列相关参数 目录1、关于`header=0` 和`skiprows=None`pd.read_excel(io, # 文件路径 sheetname=0, # 用于选取sheet表,默认是选取第一个sheet,即参数为0 header=0, # 表头,指定某一行作为列标签,默认是第一行,即参数为0 skiprows=None, # 跳过行,默认是无 index_col=No
用pd.plot绘制彩色柱状图 import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np df = pd.DataFrame({'days':[172, 200, 400, 600]}) colors = cm.RdYlGn(np.linspace(0,1,len(df))) df['days'].plot(kind='barh', color=colors) plt.show()
多分类ROC曲线:macro和 micro https://blog.zhujian.life/posts/48526d13.html通过ROC曲线能够有效评估算法的性能,默认情况下适用于二分类任务,在多分类任务中利用one vs rest方式计算各个类别的混淆矩阵,使用如下平均方式macro:分别求出每个类,再进行算术平均 优点:直观、易懂,并且方便实现 缺点:实际情况下可能不同类别拥有不同的重要性,宏平均会导致计算结果受不常用类别的影响weighted:加权累加每个类别micro:全局计算。将所有混淆矩阵累加在一起,然后计
Python如何等价复制不会改变原有位置数据 copy() 仅复制对象本身,而不对其中的子对象进行复制,如果对原子对象进行修改,那么浅层复制之后的对象也会随着修改。deepcopy() 是真正意义上的复制,即重新开辟一片空间,经常说的复制实际上就是 deepcopy,深层复制之后的对象不受原对象的影响,无论原对象发生什么修改,深层复制的对象都不会发生改变。...
Python求数据集的四分位点 目录1 方法一:np.quantile2 方法二:np.percentile1 方法一:np.quantileQ1 = np.quantile(Sample[:,-2:],0.25, axis=0)Q3 = np.quantile(Sample[:,-2:],0.75, axis=0)print(Q1)print(Q3)IQR = Q3 - Q1print(IQR)2 方法二:np.percentileprint(np.percentile(Sample[:,-2], 25), np
Python中axis到底是怎么区分理解的 目录解释1解释2解释3解释1axis=0 代表往跨行(down)axis=1 代表跨列(across)解释2使用axis=0值表示沿着每一列或行标签\索引值向下执行方法使用axis=1值表示沿着每一行或者列标签横向执行对应的方法解释3轴用来为超过一维的数组定义的属性。二维数据拥有两个轴:第0轴沿着行的垂直往下第1轴沿着列的方向水平延伸...
滞回环的骨架曲线matlab——可直接复制 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%本代码源自网络,我仅略微更改后分享。%程序功能:1.生成并输出骨架曲线点至FrameCurve.txt,提取后需要对骨架曲线点按照位移值排序;%默认格式:txt文件为两列,顺序依次为:、%读取的曲线默认:从正向开始加载,若为负向开始加载,应先进行调整。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Python画矩阵关系图(多变量联合分布图) 目录1 矩阵图法简介2 代码1 矩阵图法简介矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法。它是一种通过多因素综合思考,探索问题的好方法。从问题事项中找出成对的因素群,分别排列成行和列,找出其中行与列的相关性或相关程度大小的一种方法。2 代码import seaborn as snsdf = pd.DataFrame(Sample)columns=['0' , '1', '2' , '3' , '4' , '5' , '6' ,
机器学习的误差包含偏差和方差 目录1 Bias(偏差)、Error(误差)、Variance(方差)作者:orangeprincehttps://www.zhihu.com/question/27068705https://zhuanlan.zhihu.com/p/448726861 Bias(偏差)、Error(误差)、Variance(方差)作者:orangeprince链接:https://www.zhihu.com/question/27068705/answer/35151681来源:知乎著作权归作者所有。商业转载
偏度和峰度存在的意义 目录1 代码2 为什么要处理偏斜数据3 处理偏斜数据的一些常用技术4 峰度的意义1 代码import scipy.stats as stst.skew(data) # 计算偏度st.kurtosis(data) # 计算峰度2 为什么要处理偏斜数据因为许多统计测试和机器学习模型都依赖于正态性假设。 因此,严重偏斜意味着数据不正常,并且可能会影响您的统计测试或机器学习预测能力。如果偏度在-0.5到0.5之间,则数据是相当对称的(正态分布);如果偏斜度在-1和-0.5之间(负偏度)或0.5和