java数据科学指南_数据科学家幸福指南:从超过10,000人的快乐经历中得出的发现...

java数据科学指南

by Jordan Rohrlich

乔丹·罗利希(Jordan Rohrlich)

数据科学家幸福指南:从超过10,000人的快乐经历中得出的发现 (A Data Scientist’s Guide to Happiness: Findings From the Happy Experiences of 10,000+ Humans)

Modern life throws a lot at us. We often find ourself struggling to manage anxiety, wrangle responsibilities, adapt to new conditions, and maintain a happy state of mind.

现代生活给我们带来了很多。 我们经常发现自己在努力管理焦虑,纠缠责任,适应新情况并保持愉快的心境。

But happiness is a noisy space these days. Self help books, articles, blogs, and meditation apps can’t help everyone, and often increase the mental burden needed to stay content. That’s a serious problem. So, as mental health becomes increasingly vulnerable and solutions become increasingly complex, it’s important to anchor oneself to the fundamentals. That is, we need to refocus our daily lives on the everyday things that make people happy.

但是如今,幸福是一个嘈杂的空间。 自助书籍,文章,博客和冥想应用程序无法为所有人提供帮助,并且经常增加保持内容所需的精神负担。 那是一个严重的问题。 因此,随着心理健康变得越来越脆弱,解决方案变得越来越复杂,重要的是要使自己适应基本原理。 就是说,我们需要将日常生活重新集中在使人们快乐的日常生活上。

数据 (Data)

This research dives into a handy dataset that can help shed some light on the fundamentals of happiness. HappyDB is a set of 100,000+ happy experiences gathered through Amazon Mechanical Turk from March to June of 2017. It contains the experiences and demographics from tens of thousands of contributors around the world. Interestingly, some basic text analysis methods can help us learn a lot from this data.

这项研究深入了一个方便的数据集,可以帮助您了解幸福的基本原理。 从2017年3月至6月, HappyDB是通过Amazon Mechanical Turk收集的100,000多种快乐体验的集合。其中包含来自世界各地成千上万贡献者的体验和人口统计信息。 有趣的是,一些基本的文本分析方法可以帮助我们从这些数据中学到很多东西。

By understanding the emotional intensity and keyword patterns drawn from these happy experiences, HappyDB teaches us two valuable lessons.

通过了解从这些快乐经历中获得的情感强度和关键字模式,HappyDB教会了我们两个宝贵的经验。

You can check out the code for yourself on GitHub.

您可以在GitHub上自己检查代码。

1.幸福不是人口统计学的条件。 (1. Happiness is not conditional on demographics.)

This one is counterintuitive.

这是违反直觉的。

Most of us experience a “grass is always greener” effect with respect to happiness. Young people anticipate a happy career and family later on in life. Older folks reminisce about a time when they were young and adventurous. Bachelors yearn for companionship. Couples hope for children.

我们大多数人都体验到幸福带来的“草总是绿色”的效果。 年轻人会在以后的生活中期待事业和家庭的幸福。 老年人回忆起他们年轻而冒险的时期。 学士们渴望相伴。 夫妻希望孩子。

And, despite knowing this, we all think someone else is happier, or some other stage of our life will bring us more joy. Let’s take a look at the data.

而且,尽管知道这一点,但我们所有人都认为别人会更快乐,否则我们生活中的其他阶段将带给我们更多的快乐。 让我们看一下数据。

Sentiment analysis weighs the emotional intensity of text. Using an R package called “Syuzhet,” I measured the sentiment of these happy experiences to determine how their intensities vary. This created a spectrum of happy experiences that could be broken down by specific demographic groups:

情感分析权衡了文本的情感强度。 通过使用一个名为“ Syuzhet”的R包,我测量了这些快乐经历的情绪,以确定它们的强度如何变化。 这创造了一系列快乐的经历,可以被特定的人口群体分解:

Somewhat surprisingly, there’s little change in the spread of happy experiences across these gender, family, and age demographic groups. Here are the highlights:

令人惊讶的是,在这些性别,家庭和年龄人口群体中,快乐经历的传播几乎没有变化。 以下是重点内容:

  • Overall, the experiences are definitely positive. But the bottom quartile does have negative sentiment (some happy things poetically arise from discomfort and tragedy)

    总体而言,这些经验肯定是积极的。 但最底层的四分位数确实有负面情绪(诗意地从不适和悲剧中产生一些快乐的事物)
  • The distributions have high-end tails and fairly limited lower bounds — some experiences are extremely positive, and few are strikingly negative

    这些分布具有高端的尾巴和相当有限的下限-一些经验是非常积极的,很少是负面的
  • Self-identifying females have slightly higher sentiment scores than men for most of their experiences (a 0.05–0.1 point difference)

    自我识别的女性在大多数情况下的情绪得分略高于男性(相差0.05-0.1分)
  • Married parents have slightly higher sentiment scores than bachelors and childless couples for most of their experiences (a 0.05–0.1 point difference)

    在大多数情况下,已婚父母的感情得分略高于单身和无子女夫妇(0.05-0.1分)
  • The quartiles of happy experiences (25th, 50th, and 75th percentiles) across age groups are virtually identical

    各个年龄段的快乐体验四分位数(第25、50和75%)

In sum, there is no significant difference in the range of happy experiences reported by different demographics. Although women and parents tend to have marginally more happy experiences to record, the differences on the sentiment scale can’t be taken seriously — they correspond to a fraction of a fraction of a single happy word per experience recorded. That’s a minuscule difference.

总而言之, 不同人群所报告的快乐经历的范围没有显着差异。 尽管女性和父母往往会记录一些更幸福的经历,但是在情感尺度上的差异却不能被认真对待-每次记录的经历,它们只相当于一个快乐单词的一小部分。 那是微不足道的区别。

This dataset, however, does not include any data fields for race, socioeconomic status, or other identity positions that may materially influence daily experiences. Future happiness research should inspect these relationships closely.

但是,该数据集不包括任何种族,社会经济地位或可能严重影响日常经历的其他身份信息的数据字段。 未来的幸福研究应密切检查这些关系。

2.幸福取决于特定的经历类型。 (2. Happiness is determined by specific types of experiences.)

It’s easy to think of happiness as a mysterious, ethereal substance that penetrates our experiences in uninterpretable ways. This view espouses a metaphysical understanding of happiness as something beyond human comprehension.

人们很容易认为幸福是一种神秘的,空灵的物质,它以无法解释的方式渗透我们的经验。 这种观点支持对幸福的形而上学理解,这是人类无法理解的。

But that’s not very helpful, especially for people who rely on happy and meaningful experiences as the lifeline of their mental health.

但这并不是很有帮助,特别是对于那些依靠快乐和有意义的经历作为他们心理健康生命线的人们。

Enter Topic Modeling. This method of text analysis (explained here; I use R’s “Mallet” package) provides a constructive approach to explaining what HappyDB’s 10,000+ participants find to be happy experiences.

输入主题建模。 这种文本分析方法( 在这里进行了解释;我使用R的“ Mallet”程序包)提供了一种建设性的方法,可以解释HappyDB的10,000多名参与者发现哪些是快乐的经历。

By segmenting the dataset into documents of each respondent’s experiences, then running an LDA topic model to identify groups of commonly occurring keywords, we can begin to isolate distinct types of experiences that bring us happiness. The topics and related keywords can be seen below, in no particular order:

通过将数据集划分为每个受访者的经历的文档,然后运行LDA主题模型以识别常见的关键词组,我们可以开始隔离各种不同类型的体验,这些体验会带给我们快乐。 可以按以下顺序查看主题和相关关键字,但顺序不限:

和家人在一起的时间 (Time with Family)

Seems like a no-brainer. Words like “daughter,” “son,” “husband,” “baby,” “wife,” and “time” seem to show that lots of people reflect very positively on experiences that involve their loved ones. These experiences often involve the most commonplace of settings and derive happiness simply from company and affection.

似乎不费吹灰之力。 诸如“女儿”,“儿子”,“丈夫”,“婴儿”,“妻子”和“时间”之类的词似乎表明,很多人对涉及亲人的经历非常积极地反思。 这些经历常常涉及到最普通的环境,并仅仅从公司和感情中获得幸福。

Try spending more time with loved ones: call your mom, go to your kid’s soccer game. It may pay off more than you think.

尝试花更多的时间与亲人在一起:给妈妈打电话,去看孩子的足球比赛。 它可能会带来超出您预期的回报。

获取报酬 (Getting Paid)

Although people don’t like thinking that money relates to happiness, their experiences sure say the opposite. Getting a paycheck, clearing a credit card balance, or giving money to a friend can make people really happy. And the sense of accomplishment and economic security that comes with would definitely explain why.

尽管人们不喜欢金钱与幸福有关,但他们的经历肯定会相反。 得到薪水,清除信用卡余额或给朋友钱可以使人们真正感到高兴。 随之而来的成就感和经济安全肯定可以解释原因。

餐饮 (Food)

People love eating. Cooking a favorite meal, eating out with friends, or gorging on a pint of iced cream in front of the TV can all make someone happy. Good food with friends should definitely play a part in any happy lifestyle.

人们喜欢吃东西。 煮一顿最喜欢的饭菜,和朋友一起出去吃饭或者在电视机前品尝一品脱冰淇淋都可以使一个人高兴。 与朋友的美食应该在任何幸福的生活方式中发挥重要作用。

睡觉时间 (Sleep Time)

Surprisingly, people document lots of happy experiences around sleep: cuddling up in bed, going to sleep with a furry friend, waking up to a promising new day, and so on. There’s lots to be happy about, if one takes a moment to reflect at night after a productive day, or in the motivated morning before something exciting.

令人惊讶的是,人们记录了很多关于睡眠的快乐经历:拥抱床上,和毛茸茸的朋友一起睡觉,醒来充满希望的新一天等等。 如果一个人要花一天时间在富有成效的一天之后的夜晚,或者在激动人心的早晨之前花点时间思考,会有很多事情值得高兴。

游戏与比赛 (Games and Competition)

Humans are competitive. They love playing video games, watching sports, and doing other things that stoke their biological instinct to dominate. Play a board game with some friends or get excited about your home sports team. Chances are you’ll be happy you did.

人类具有竞争力。 他们喜欢玩电子游戏,看体育比赛以及做其他事情,这些事情激发了他们的生物本能。 与一些朋友一起玩棋盘游戏,或者对您的家庭运动队感到兴奋。 您可能会很高兴自己做到了。

成就与教育 (Achievement and Education)

After weeks of work, it feels great to finish big enterprises. Finishing a class, graduating from school, or launching a project can all seriously lift a person’s mood. But finishing big undertakings requires a few to start, so go out and start something new! Learning and doing are rewarded handsomely.

经过数周的工作,完成大型企业感觉很棒。 完成课程,从学校毕业或开展项目都可以严重提高一个人的情绪。 但是完成一项大事业需要一些开始,所以出去做点新的事情吧! 学习和做事会得到丰厚的回报。

庆祝和生日 (Celebrating and Birthdays)

Obviously, celebrations make people happy (think birthdays, anniversaries, and friendsgivings). People enjoy finding a reason — however important or silly — to meet up with loved ones, get happy about an occasion, and do something to break up a dull weekly routine.

显然,庆祝活动使人们感到高兴(想想生日,纪念日和感恩节)。 人们喜欢找到理由(无论多么重要或很愚蠢)与亲人会面,对某个场合感到高兴并做一些事情来打破平淡的每周例行工作。

心理平衡与内省 (Mental Balance and Introspection)

The act of tuning into one’s mental state seems to provide a lot of happiness in and of itself. Thinking introspectively about one’s wellbeing, head space, and happiness seem to have positive effects on those very things! Try meditating, reflecting on happy experiences, or just being aware of your mental state — it may be the very thing to help boost it.

调整自己的精神状态的行为似乎本身就提供了很多快乐。 内省地思考一个人的健康,头部空间和幸福似乎对这些事情有积极的影响! 尝试冥想,反思快乐的经历,或者只是意识到自己的心理状态,这可能就是帮助提升心理状态的关键。

开支 (Spending)

Satisfying our material desires, of course, brings lots of people happiness. Finding good deals, finally buying that car or home, and getting something nice for oneself or a loved one all create some sort of happiness. Enjoy responsibly.

满足我们的物质欲望,当然会给很多人带来幸福。 找到好交易,最后购买那辆汽车或房屋,并为自己或所爱的人买些好东西,都会带来某种幸福。 负责任地享受。

周末旅行 (Weekend Trips)

People like being off work, but enjoy it dramatically more if enjoyed in good company, while doing something different. Go on a trip somewhere, have an outing nearby, or find another novel excuse for spending time with others in new scenery. The data says you certainly won’t regret it.

人们喜欢下班,但是如果在一个好的公司里享受,却又能做些不同的事情,会更享受它。 去某个地方旅行,在附近郊游或寻找另一个新颖的借口与新人一起度过时光。 数据表明您当然不会后悔。

阅读和音乐 (Reading and Music)

Whether bundling up at home with a new book or discovering a song on the bus ride home, lots of people get happy through the simple act of reading or listening. Taking an hour before bed to read something new or skim through Discover Weekly is probably worth the time investment.

不管是在家捆绑一本新书还是在公交车上发现一首歌,许多人都可以通过简单的阅读或聆听来获得快乐。 睡前一个小时阅读《发现周刊》上的新事物或略读一下,可能值得花费时间。

决定 (Decisions)

Decisions also clock in as a big happiness generating activity. It’s exciting to spend time thinking about a big change, decide to do something new, and tell people about it. It leaves a lingering mood boost for lots of folks, too. So make a change you’ve been meaning to for a while; and commit to it!

决策也作为一种极大的创造幸福的活动而出现。 花时间思考一个大的变化,决定做一些新的事情,并告诉人们这是令人兴奋的。 这也为许多人留下了挥之不去的心情。 因此,进行一段时间的有意义的更改; 并致力于它!

结语 (Wrapping up)

These twelve categories of experience represent the foundations of daily happiness for tens of thousands of people. Given that humans are more alike than we often give them credit for, the same can likely be said about you.

这十二种经历代表了成千上万人每天幸福的基础。 鉴于人类比我们通常认为的更为相像,因此关于您的说法可能也是如此。

This method, like any, is imperfect. Some demographics contribute more heavily than others, which may throw curious words into some topics, or may bias the topics that are represented in the model. Textual data is messy and people also don’t think about happiness in crisply defined categories of experience.

像其他方法一样,这种方法也不完美。 一些人口统计数据比其他人口统计数据贡献更大,这可能使某些主题充满好奇,或使模型中表示的主题有偏差。 文字数据很乱,人们也没有在定义明确的体验类别中考虑幸福。

But, using these two lessons as a basic structure for understanding positivity in our everyday lives, I think it can help remind us that happiness is never so far off as we may think.

但是,以这两节课为基础来理解我们日常生活中的积极性,我认为它可以帮助我们提醒我们,幸福从未像我们想象的那样遥不可及。

We already know many of these happy topics to be true on some level. But we rarely recognize the power that they have on our mood, and so don’t structure them into our everyday lives as readily as we should.

我们已经知道许多快乐的话题在一定程度上是正确的。 但是我们很少意识到它们对我们情绪的影响力,因此不要像我们应该的那样轻松地将它们融入我们的日常生活。

These categories are empirically-certified mood boosters. They’re happiness slam dunks.

这些类别是凭经验证明的情绪增强器。 他们是幸福的灌篮。

So we should take what we can get. Throw out the self-help handbooks and focus on real happy experiences. You may like what you find.

因此,我们应该尽力而为。 扔掉自助手册,并专注于真实的快乐体验。 您可能会喜欢您发现的东西。

If you found this article helpful, share it with a friend or give some claps ?.

如果您觉得这篇文章对您有帮助,请与朋友分享或鼓掌?

See the code for yourself on GitHub!

GitHub上自己查看代码!

翻译自: https://www.freecodecamp.org/news/a-data-scientists-guide-to-happiness-findings-from-the-happy-experiences-of-10-000-humans-fc02b5c8cbc1/

java数据科学指南

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值