线性代数行列式 和矩阵_零和一矩阵的行列式| 使用Python的线性代数

线性代数行列式 和矩阵

Prerequisites:

先决条件:

In linear algebra, the determinant is a scalar value that can be computed for a square matrix and represents certain properties of the matrix. The determinant of a matrix A is denoted det(A) or det A or |A|. There are matrices such as Zero and Ones matrices which have a constant determinant value and that is 0.

在线性代数中,行列式是可以为方矩阵计算的标量值,代表矩阵的某些属性。 矩阵A的行列式表示为det(A)det A| A |。 。 存在矩阵(例如零和一的矩阵)具有恒定的行列式值且为0。

Using python library function, we will find the determinant of various zero and ones matrices.

使用python库函数,我们将找到各种零和一矩阵的行列式

用于演示零和一矩阵行列式的Python代码 (Python code for demonstrating the determinant of a zeros and ones matrices)

# Linear Algebra Learning Sequence
# Determinant of a Zeros and Ones matrices

import numpy as np

oneM = np.ones([4,4])
det_oneM = np.linalg.det(oneM)
zeroM = np.zeros([4,4])
det_zeroM = np.linalg.det(zeroM)

print("Ones Matrix: \n", oneM, "\nDeterminant : ", det_oneM)
print("\n\nZeros Matrix: \n", zeroM, "\nDeterminant : ", det_zeroM)

Output:

输出:

Ones Matrix: 
 [[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]] 
Determinant :  0.0


Zeros Matrix: 
 [[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]] 
Determinant :  0.0


翻译自: https://www.includehelp.com/python/determinant-of-a-zeros-and-ones-matrices.aspx

线性代数行列式 和矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值