线性代数矩阵行列式_矩阵的行列式 使用Python的线性代数

线性代数矩阵行列式

In linear algebra, the determinant is a scalar value that can be computed for a square matrix and represents certain properties of the matrix. The determinant of a matrix A is denoted det(A) or det A or |A|. Python library numpy provides a wide range of functions that can be used to manipulate matrices. One of such functions is numpy.linalg.det(A), which allows us to directly return the value of the determinant of a matrix A.

在线性代数中, 行列式是可以为方矩阵计算的标量值,代表矩阵的某些属性。 矩阵A的行列式表示为det(A)det A| A |。 。 Python库numpy提供了广泛的函数,可用于处理矩阵。 numpy.linalg.det(A)是此类函数之一 ,它使我们可以直接返回矩阵A的行列式的值。

Following is a python code for demonstrating how to use numpy.linalg.det(A)

以下是用于演示如何使用numpy.linalg.det(A)的python代码

用于演示如何使用numpy.linalg.det(A)的Python代码? (Python code for demonstrating how to use numpy.linalg.det(A)?)

# Linear Algebra Learning Sequence
# Finding determinant

import numpy as np 

M = np.array([[2,3,4], [3,45,8], [4,8,78]])
print("---Matrix A---\n", M)

det_A = np.linalg.det(M)

print("The determinant of matrix A : ", det_A)

M = np.array([[2,3,4], [3,14,8], [14,8,7]])
print("\n\n---Matrix B---\n", M)

det_B = np.linalg.det(M)

print("The determinant of matrix B : ", det_B)

Output:

输出:

---Matrix A---
 [[ 2  3  4]
 [ 3 45  8]
 [ 4  8 78]]
The determinant of matrix A :  5661.9999999999945


---Matrix B---
 [[ 2  3  4]
 [ 3 14  8]
 [14  8  7]]
The determinant of matrix B :  -347.00000000000006


翻译自: https://www.includehelp.com/python/determinant-of-a-matrix.aspx

线性代数矩阵行列式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值