线性代数 —— 矩阵的行列式

1.行列式

排成 n 阶方阵形式的 n^2 个数所确定的一个数称为 n 阶方阵 A 的行列式,记为:det(A) 或 |A|

一个 2x2 的矩阵的行列式可表示为:det\begin{pmatrix} a&b \\ c&d \end{pmatrix}=ad-bc

2.余子式与代数余子式

将 n 阶行列式中元素 a_{ij } 的第 i 行和第 j 列划去后,留下的 n-1 阶行列式称为 a_{ij } 的余子式 ,记作:M_{ij}

将 a_{ij } 的余子式与 -1 的 i+j 的幂的乘积称为代数余子式,记作:A_{ij}=(-1)^{i+j}M_{ij}

一个 n 阶方阵的行列式等于任意行/列的元素与对应的代数余子式乘积之和,即:det(A)=\sum_{j=1}^na_{ij}(-1)^{i+j}det(A_{ij})

4.主子式与顺序主子式

在 n 阶行列式中,选取 k 个行号,再选取与行号相同的 k 个列号,则有行列均为 k 个的行列式即为 n 阶行列式的 k 阶主子式,简单来说,即在 n 阶行列式中,选取的 k 个行列号相同的行、列的交汇处的元素组成的行列式

在 k 阶行列式中,由 1~k 行和 1~k 列组成的子式,即为 n 阶行列式的 k 阶顺序主子式

5.行列式的性质

  1. 互换矩阵的两行(列),行列式变号
  2. 如果矩阵有两行(列)完全相同,则行列式为 0
  3. 如果矩阵的某一行(列)中的所有元素都乘以同一个数 k,新行列式的值等于原行列式的值乘上数 k
    推论:如果矩阵的某一行(列)中的所有元素都有一个公因子 k,则可以把这个公因子 k 提到行列式求和式的外面
  4. 如果矩阵有两行(列)成比例(比例系数k),则行列式的值为 0
  5. 如果把矩阵的某一行(列)加上另一行(列)的 k 倍,则行列式的值不变

6.主子式的值

对于一个主子式的值,可以根据其定义算出:det(A)=\sum_p((-1)^{\tau (P)}*A_{1,p1}*A_{2,p2}*...*A_{n,pn})

其中 P 为 1~n 的一个排列,τ(P) 为排列 P 的逆序对数,求和式的每一项可以看做在矩阵中选出 n 个数,使得他们的行列都不重合,显然,求和式共 n!项,根据定义求值的时间复杂度是 O(n!) 阶的,因此必须根据行列式的性质进行优化。

由于对于任意一个上(下)三角矩阵,其行列式的值为对角线的乘积。

因此可根据性质 5,可采用高斯消元的方法,将矩阵消为一个上三角矩阵后,求出对角线的积,即为该矩阵的行列式的值,时间复杂度为 O(n^3)

如果要求的矩阵不允许出现实数,且需要取模,那么采用辗转相除的高斯消元法,时间复杂度多出一个 O(logN)

int f[N][N];//n阶矩阵
int gauss(int n){//主子式的值
    int res=1;
    for(int i=1;i<=n-1;i++){//枚举主对角线上第i个元素
        for(j=i+1;j<=n-1;j++){//枚举剩下的行
            while(f[j][i]){//辗转相除
                t= f[i][i]/f[j][i];
                for(int k=i;k<=n-1;k++)//转为倒三角
                    f[i][k]=(f[i][k]-t*f[j][k]+MOD)%MOD;
                swap(f[i],f[j]);//交换i、j两行
                res=-res;
            }
        }
        res=(res*f[i][i])%MOD;
    }
    return (res+MOD)%MOD;
}
  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值