1、求由A、B、C、D组成的允许重复的n位排列中,AB至少出现一次的排列数目。
2、求n位4进制数中2和3必须出现偶数次的数目。
3、求a,b,c三个字符组成的n位符号串中不出现aa图像的符号串的数目。
答案:
1、设AB至少出现一次为an,AB不出现为bn,则:
an+bn = 4^n;
如果最后一位不是B,那么第n-1位随便什么都可以,所以3bn-1;如果最后一位是B,则第n-1位不能是A,种类数为bn-1 - bn-2;
bn = 4bn-1 - bn-2;
特征方程:x^2-4x+1 = 0;
b1=4,b2=15
2、0和1可以出现0次,1次,2次。。。,2和3可以出现0次,2次,4次。。。而且顺序不同的被视为不同(排列),所以母函数为:
对应的系数为
,即为所求。
3、如果最后一位是a,则n-1位只能是b或c,对应2*bn-2;如果最后一位不是a,则可以是b或c,对应2*bn-1;所以an=2*bn-1+2*bn-2;
求解过程: