自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 收藏
  • 关注

原创 Maven依赖配置、依赖传递、依赖范围

本文介绍了Maven依赖管理的三个核心概念:1)依赖配置方法,在pom.xml中通过dependencies标签添加依赖坐标;2)依赖传递机制,包括直接依赖和间接依赖,可通过exclusions标签排除特定依赖;3)依赖范围设置,使用scope标签控制依赖在编译、测试和打包等不同阶段的有效范围。文章还提供了从Maven仓库搜索依赖坐标的操作图示。

2025-09-05 17:25:26 256

原创 神经网络算法各种层的原理(基于Keras)--输入层,全连接层,卷积层,池化层,嵌入层,长短期记忆网络层等

神经网络中的不同层提供了构建各种深度学习模型所需的基础构件,承担着数据转换和特征提取的核心功能。我们可以根据具体任务的需求选择合适的层来构建模型。

2025-09-05 17:21:25 1618 1

原创 Matplotlib学习

本文介绍了Python数据可视化库Matplotlib的基本概念和使用方法。主要内容包括:1) Matplotlib的安装与模块导入;2) 基础绘图功能,如绘制直线、折线图和设置样式(颜色、线型、标记、标题、坐标轴等);3) 进阶功能,包括曲线图的绘制(正弦/余弦)和子图划分;4) 图像构成的四个层次(Axis、Axes、Figure、Artist)。文章通过多个代码示例展示了如何创建不同类型的图表,并详细说明了如何调整图表样式、添加图例和标注等。最后简要介绍了子图绘制和图像构成的基本概念,为数据可视化提供

2025-08-31 20:57:49 1044

原创 自然语言处理NLP:嵌入层Embedding中input_dim的计算——Tokenizer文本分词和编码

摘要:本文介绍了Keras中Embedding层的input_dim参数计算方法,主要基于Tokenizer分词器构建词汇表。Tokenizer会对文本进行分词和编码,为每个词分配唯一编号,词汇表大小即为唯一词数量加1(预留索引0)。文章通过示例代码展示了Tokenizer的使用流程,包括文本预处理、序列填充和Embedding层创建,并解释了如何确定output_dim和input_length等参数。最后演示了模型预测过程,输出词向量维度为(样本数,序列长度,词向量维度)。

2025-08-31 20:56:53 275

原创 Raspberry Pi 5树莓派5 烧录系统到树莓派上

树莓派有自己的烧录工具,可通过以下链接下载对应的工具通过网盘分享的文件:链接: https://pan.baidu.com/s/1-bY6bysqP9BO-zlnAWMnQA 提取码: 278t打开后,文件如上图所示。根据自己电脑的系统,下载对应的烧录工具。

2025-03-07 11:10:26 1408

原创 ubuntu中下载安装python3.11

enable-optimizations 参数是为了启用优化选项,可以提高 Python 的性能。由于我是在桌面上安装解压的,可以看到ubuntu桌面上有一个Python-3.11.0的文件夹。使用 altinstall 命令以避免与系统默认的 Python 版本冲突。5.切换目录到Python-3.11.0(注意区分大小写),并且可以用。6.配置Python3.11.0。7.安装Python3.11.0。

2025-03-07 11:08:57 1835

原创 在外面windows系统中复制的内容粘贴到VMware虚拟机中ubuntu

2.在VMware主界面中选择虚拟机,然后点击“编辑虚拟机设置”,然后点“选项”,再点“客户机隔离”,确保“启用拖放”和“启用剪切板共享”都是勾选状态,最后点击确定。2.下载安装open-vm-tools,open-vm-tools-desktop。再次启动虚拟机,已经实现功能。1.打开终端,更新软件库。第二步:启用共享剪切板。1.关闭Ubuntu。

2024-08-09 16:23:06 8426 5

原创 下载安装VMware和win11系统

官网下载或者此处百度网盘下载:链接:https://pan.baidu.com/s/1QKFRiRyLZ2icGL9biVS4TA提取码:qu7x打开安装文件(百度网盘中VMware-workstation-full-17.5.2-23775571.exe)后点击下一步:点击接受协议,下一步:修改安装位置后点击下一步:后续一直点击下一步:直到最后点击安装:安装完成后,点击许可证:点击文件夹中的txt文件,复制17版本的密钥输入:安装完成:点击进入网址后,下拉找到磁盘映像:点击

2024-08-09 15:43:09 2167

原创 Maven的安装与配置

Maven是一款管理和构建java项目的工具,它基于项目对象模型(POM)的概念,通过一小段描述信息来管理项目的构建。

2024-05-31 17:17:44 538

原创 IDEA集成Maven--在IDEA中配置Maven环境

打开文件-设置:设置Maven的路径:设置用户文件,改为maven的配置文件中settings.xml的位置,如下:我的JDK版本是19,所以Maven运行程序和JAVA编译器都选择19:不要打开项目,直接打开自定义选项中的所有设置:和1.1中的设置Maven的路径步骤一样,修改如图所示的Maven路径和用户设置文件,后续也是一样的:创建模块,选择Maven填写模块名称,坐标信息:Archetype 骨架是一个 Maven 的项目模板,它定义了项目的基本结构、依赖和配置。通过使用

2024-05-31 17:16:52 605

原创 yolov5训练自己的数据集

在VOCData中新建文件夹Annotations,放置.xml的标签文件。conf-thres:置信度阈值,只有置信度高于此阈值的对象才会被检测出来,可以根据自己的结果修改。epochs和batch-size按照自己的需要设置,刚开始试运行的时候,可以调整的低一点。(4)训练结束之后,可以看到目录中runs/train中有跟新的结果,我这边是exp5。此处0表示打开默认摄像头。names表示类别的名字,如果有多个,就都写入[ ]中,用逗号隔开。安装后,运行detect.py,如果成功运行,则安装完毕。

2024-03-21 10:37:26 1819 2

原创 目标检测性能指标和计算方法

Precision: 所有Positive的预测中(也就是预测为1),预测正确的比例。Recall: 现实中为1的case中,被Positive预测(也就是预测为1,被正确预测了) 的比例是多少。所有正样本中被预测为正的比例。精度Precision(查准率)评估预测的准不准召回率Recall(查全率)评估找的全不全。

2024-03-21 09:16:53 1006

原创 yolo环境的下载和安装

可参考。

2024-01-04 16:53:38 2064 2

原创 labelimg的安装、说明和具体操作

如果LabelImg出现闪退的问题,那是因为python版本不适,需要创建新的虚拟环境。具体可参考。

2023-12-27 15:32:18 3583 1

原创 Vue组件库Element

Element:是饿了么公司前端开发团队提供的一套基于 Vue 的网站组件库,用于快速构建网页。Element 提供了很多组件(组成网页的部件)供我们使用。例如 超链接、按钮、图片、表格等等。

2023-11-23 16:55:16 241

原创 前端工程化--NodeJS下载安装、Vue-cli下载安装

下载稳定版:node -v。如果显示出版本信息了,说明安装成功。注意:D:\nodejs 这个目录是NodeJS的安装目录这个过程中,联网下载,可能会耗时几分钟,耐心等待。

2023-10-19 10:06:02 168

原创 解决方法:Visual Studio Code中npm脚本找不到

2023-10-18 14:33:32 565 1

原创 Ajax,Axios 异步交互

Ajax: 全称Asynchronous JavaScript And XML,异步的JavaScript和XML。其作用有如下2点:与服务器进行数据交换:通过Ajax可以给服务器发送请求,并获取服务器响应的数据。如下图所示前端资源被浏览器解析,但是前端页面上缺少数据,前端可以通过Ajax技术,向后台服务器发起请求,后台服务器接受到前端的请求,从数据库中获取前端需要的资源,然后响应给前端,前端在通过我们学习的vue技术,可以将数据展示到页面上,这样用户就能看到完整的页面了。

2023-10-09 15:35:19 145 1

原创 Vue 前端框架

是一套前端框架,免除原生JavaScript中的DOM操作,简化书写。基于思想,实现数据的双向绑定,将编程的关注点放在数据上。

2023-10-08 14:57:52 291 1

原创 Python神经网络环境搭建(anaconda,cuda,jupyter,tensorflow,pytorch,torchvision,pycharm)

以管理员身份打开cmd,通过cd命令转换到相应的文件位置,输入上图圈中的命令进行测试,若会显示result=pass,则说明安装无误,那么应该是在安装之后没有设置好系统环境变量,重新设置变量之后再进行测试。torch与torchvision也有对应关系,我是1.13.1的torch,3.10的python,所以我选择对应的。CUDA版本确定后,pytorch要依赖此CUDA版本,因为pytroch安装跟cuda对应的。首先要激活安装pytorch的python环境,之后到下载目录下进行安装。

2023-10-08 08:36:58 2152 1

原创 JavaScript(JS引入方式,JS基础语法,JS函数,JS对象,JS事件监听)

JavaScript(简称:JS)是一门跨平台、面向对象的脚本语言,是用来控制网页行为的,它能使网页可交互。

2023-10-07 09:38:56 1575 1

原创 降维算法--PCA

在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或者有一些特征带有的信息和其他一些特征是重复的(比如一些特征可能会线性相关)。我们希望能够找出一种办法来帮助我们衡量特征上所带的信息量,让我们在降维的过程中,能够即减少特征的数量,又保留大部分有效信息——将那些带有重复信息的特征合并,并删除那些带无效信息的特征等等——逐渐创造出能够代表原特征矩阵大部分信息的,特征更少的,新特征矩阵。在降维中,PCA使用的信息量衡量指标是样本方差,又称可解释性方差,方差越大,特征所带的信息量越多。

2023-09-12 17:50:05 443

原创 Java Web——web前端开发入门

Web标准:三部分组成。

2023-09-12 17:47:41 2830

原创 VS Code 安装

进入VS Code官网:https://code.visualstudio.com,点击 DownLoad for Windows 下载windows版本下载完毕后进行安装(点击next,换安装位置)

2023-09-07 15:14:27 219 1

原创 特征选择--Filter过滤法,Embedded嵌入法,包装法

过滤方法通常用做预处理步骤,特征选择完全独立于任何机器学习算法。是根据各种统计检验中的分数以及相关性的各项指标来选择特征的......

2023-08-08 23:48:56 861

原创 处理连续性变量--二值化与分段

根据阈值将数据二值化(将特征值设置为0或者1),用于处理连续型变量。大于阈值的值映射为1,小于阈值的值映射为0。二值化是对文本数据常见的处理方式。

2023-08-07 15:06:00 562 1

原创 处理分类型特征:编码与哑变量

机器学习中的大多数算法,e.g.逻辑回归,支持向量机SVM,k近邻算法等都只能处理数值型数据,所以要将数据进行编码,即将文字型数据转换成数值型。

2023-08-06 15:44:05 294 1

原创 数据无量纲化--归一化,标准化

数据的无量纲化可以是线性的或者非线性的。线性的无量纲化包括中心化处理和缩放处理。中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置。缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放。

2023-08-04 22:37:04 517 1

原创 机器学习算法调参--随机森林

在机器学习中,我们用来衡量模型在未知数据上的准确率的指标,叫做泛化误差。当模型在未知数据上表现糟糕时,说明模型的泛化程度不够,泛化误差大,模型的效果不好。泛化误差受到模型的结构(复杂度)的影响。当模型太复杂,模型会过拟合,泛化误差大。当模型太简单,模型就会欠拟合,泛化误差也会大。调参的过程:判断模型处于图像的哪一边,然后减少或者增加模型的复杂度,把模型往图像的左边或者右边移动,到最佳模型复杂度,泛化误差最低点。

2023-08-04 00:10:07 1156 1

原创 填补缺失值

用SimpleImputer来填补缺失值需要导包from sklearn.impute import SimpleImputer #填补缺失值的类。

2023-07-26 16:07:14 224 1

原创 决策树--分类树、回归树

决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法的核心是要解决两个问题:1)如何从数据表中找出最佳节点和最佳分枝?2)如何让决策树停止生长,防止过拟合?例如数据集:目标是,将动物们分为哺乳类和非哺乳类。

2023-07-17 22:31:51 858 1

原创 Anaconda中安装库

pip或者conda install/uninstall 库名。进入虚拟环境之后,base环境就会更换为激活的虚拟环境。#conda查看、新建、删除虚拟环境。##1.查看conda下所有虚拟环境。##列出当前虚拟环境下所有的包。##安装/卸载某个库。##更新部分/所有包。

2023-07-16 21:10:47 1166 1

python实现简单聊天系统 Tkinter+socket

一个简单的聊天系统,实现两个客户端的通信,服务器充当中间转发器。服务器的主要任务是在两个客户端之间传递数据。并且绘制了聊天窗口。

2026-01-08

threading/multiprocessing对比实验

1、通过threading和 multiprocessing在CPU密集型任务的对比实验中掌握两者的区别 实验1: 使用多线程(threading库)完成CPU密集型任务,得到计算时间。 (注意:由于GIL(全局解释器锁)的存在,Python的标准线程库在CPU密集型任务上可能不会带来性能提升。) 实验2: 使用多进程(multiprocessing库)完成CPU密集型任务,得到计算时间。 2、通过threading和 multiprocessing在IO密集型任务的对比实验中掌握两者的区别 实验1: 使用多线程(threading库)完成IO密集型任务,得到计算时间。 实验2: 使用多进程(multiprocessing库)完成IO密集型任务,得到计算时间。 注:多进程不适合IO密集型任务,虽然可以利用多核资源,但没有任何意义。无论开多少进程,CPU都没有用武之地,多数情况下CPU都在等待IO操作。

2026-01-08

HTTP请求-Get, Post(分别使用http.client、urllib 和 requests 库)

文件中包含几个简单示例: 使用http.client库向百度或自己创建的服务器发起GET请求 使用urllib库向百度或自己创建的服务器发起GET请求 使用requests库向百度或自己创建的服务器发起GET请求 使用http.client库向jsonplaceholder的服务器发起Post请求 使用urllib库向jsonplaceholder的服务器发起Post请求 使用requests库向jsonplaceholder的服务器发起Post请求 适合刚学习python语言HTTP请求的友子们对比学习,非常简单。

2026-01-08

单元测试生成测试报告unittest、unittestreport

用unittest组织测试用例,给register.py里面的register函数编写测试用例进行单元测试:  涵盖3个文件:   1、register.py 里面有被测试的功能函数。  2、test_register.py 为测试用例文件。  3、run_test.py 为运行测试用例文件。

2026-01-08

pymysql+tkinter猜数字游戏

设计登录界面,在文本框中填写用户名和密码,比对user_db数据库中的信息,若登录成功则跳转至猜数字的游戏界面,若失败则给出弹窗信息。或选择注册按钮,跳转至注册页面,用户输入用户名密码注册信息,注册成功后返回登录页面。

2026-01-08

基于macOS的树莓派烧录工具

树莓派有自己的烧录工具树莓派有自己的烧录工具,可通过下载资源安装对应的工具 根据自己电脑的系统,下载对应的烧录工具。如果你的系统是macOS,那就可以下载这个烧录工具。如果是win,则不合适。

2026-01-08

基于ubuntu操作系统的树莓派烧录工具

树莓派有自己的烧录工具,可通过下载资源安装对应的工具 根据自己电脑的系统,下载对应的烧录工具。如果你的系统是ubuntu,那就可以下载这个烧录工具。如果是win,则不合适。

2026-01-08

飞鸟数据集,用于目标检测,里面不仅仅包括鸟类的近照,还包含飞翔的鸟类和鸟群的图片(共4800多张图片+标签)

VOCdevkit: JPEGImages:飞鸟的图片; Annotations:.xml标签, txt:.txt标签,用于yolo目标检测

2024-04-12

特征选择-Filter过滤法,Embedded嵌入法,包装法

特征选择-Filter过滤法,Embedded嵌入法,包装法

2023-08-08

数据无量纲化-归一化,标准化

使用sklearn,numpy来归一化,标准化并且逆转。

2023-08-04

机器学习算法调参-随机森林

尝试了机器学习一般的调参方法:学习曲线,网格搜索

2023-08-04

均值、0、和随机森林来填补缺失值

用均值、0、和随机森林来填补缺失值。所采用的数据集是sklearn中的波士顿房价数据集

2023-07-26

随机森林-分类-红酒数据集

随机森林-分类-红酒数据集

2023-07-19

泰坦尼克号幸存者预测-决策树-分类

泰坦尼克号幸存者预测-决策树-分类

2023-07-18

决策树-分类树-红酒数据集-sklearn

决策树-分类树-红酒数据集-sklearn

2023-07-18

决策树-回归树-sklearn

决策树-回归树-sklearn

2023-07-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除