天算大数据模型搭建——积分模型

积分权重

积分是微积分学与数学分析里的一个核心概念,通常分为定积分和不定积分两种。

积分

统计指标变量的总和

常见于商业,商家为了刺激消费者消费,而使用的一种变相营销的方式。比如,满多少积分可换购某样商品,满多少积分会提升等级等。

权重

指某一因素或指标相对于某一事物的重要程度,其不同于一半的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度,倾向于重要度或重要性。

积分权重:通过给不同指标附加不同的权重(加权),进行计算得到积分和。

积分权重的使用场合

根据业务逻辑进行建模,根据业务逻辑,其结果(优、中或差,正常或异常)需要依据多个重要程度(权重)不同的业务特征(指标)的和来得出。

指标的选择

在建模的业务逻辑中,指标为不可缺失的“选择”,即该指标对目标结果造成影响。

反诈积分模型:访问网站(菠菜、贷款)、访问时间(30分钟)

访问时间和访问网站有一定影响,有一定关联

吸毒人员发现模型:航班信息、酒店次数、住店时长

基本没有影响

重点人员关系热积分模型:同行、同住、亲属关系、同好友

对目标结果有影响

权重的设定

权重是指某因素在整体评价中的相对重要(影响)程度。权重越高,则该因素越重要

标度含义样例(重点人关系人积分模型)
1两指标相比,具有同样的重要性同火车和同酒店
3两指标相比,前者比后者稍微重要同火车和同公交
5两指标相比,前者比后者明显重要同火车和同地铁
7两指标相比,前者比后者及其重要同火车和同超市
9两指标相比,前者比后者强烈重要同火车和同大楼
2,4,6,8上述两指标判断结果党的中间值同小区

外地卡农窝点发现模型

业务背景

选题背景

当前xx市设计诈骗形式严峻,一线民警发现存在外地卡农至xx市进行开卡活动

目的意义

通过旅馆、民航、动车记录等数据,分析发现外地卡农可疑人员

模型设计

数据来源

XX省民航旅客离港信息

XX省12306动车旅客信息

XX省境内旅客住宿信息

模型思路

  1. 3-5人同时住宿同一家酒店,时间3-5天左右;
  2. 身份证外地人员同行来xx地市(航班、动车等);
  3. 计算同行/同住分值,并过滤超出阈值的数据;

模型实现

一、旅馆同住分析
  1. 2020年起,有在XX地市入住酒店,且旅客登记的地址为非福建省的人员;
  2. 同住条件:同旅馆、前后入住间隔半小时,同一天退房;
  3. 同住人员(含自己),大于等于3个人and小于等于6个;入住时间在3-5天;
二、同交通工具出行(航班或动车)
  1. 2020年起,动车、民航出行;
  2. 基于第一步中XX地市旅馆同住人员,分析这些人存在的同动车、同民航行为,同时统计同动车次数、同航班次数;
三、计算同行分值
  1. 同旅馆得分:同旅馆1次,得1分;同旅馆2次及以上,得2分;
  2. 同动车得分:目的地非XX地市同动车1-2次,得分1分;目的地市XX地市同动车1次或同动车出行大于等于3次以上,得两分;XX地市同动车2次及以上,得分3分;
  3. 同航班得分:同航班1次,得1分;同航班2次及以上,得2分;
四、同行分值过滤
  1. 过滤分值大于等于3分以上得同行人员;
  2. 同行人员去重;
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

currify--+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值