这系列笔记只为自己记录,可能有不详细的地方,如有错误,欢迎指出
1.异或交换
不用额外空间就可以交换两个数字(只要这两个数字不占用相同内存)
void Swap(int& a, int& b)
{
a = a ^ b;
b = a ^ b;
a = a ^ b;
}
原理:
- 异或满足交换律和结合率
- N^0=N, N^N=0
因此,这三行代码可以这样解释:
假设int a=甲,int b=乙。
a=a^b 即a=甲^乙
b=a^b 即b=甲乙乙,此时根据结合律,两个乙抵消,b=甲
a=a^b 即a=甲乙甲,此时根据交换律,两个甲抵消,a=乙,交换完成。
拓展:
(1)一组数里,只有一个数字出现了奇数次,剩下的数都出现了偶数次,找出这个奇数。要求时间复杂度为O(n)
思路:设一个变量,例如int eor,将eor连续与每一个数字相异或,也就是eor=eor^a这样。
全部与完后,因为交换律,可以写为eor=aabb&=c^c……所有的偶数次出现的数字都会因为交换率而抵消,为0,最后留下的那个就一定是那个出现奇数次的数。
(2)那么如果有两个数字出现了奇数次呢?如何找出这两个数?要求时间复杂度为O(n)
思路:首先还是设置变量eor,和之前一样连续数字相与,假设目标数字叫a和b,那么eor最后一定是:eor=a^b。
下一步,找到eor二进制数字中为1的位,以这个位为基准, 再创建一个变量eor’,令eor’=eor’(所有这组数中这个位为1或0的数字),还是相同的数字相互抵消,最后eor’一定等于a或者b。最后,令eoreor’,就可以求出另一个数了。
因为a^b的后的结果中的那一位为1,这就说明这个位可以将这组数字分为两组,一组里包含a,一组里包含b,那么用eor’与这两组中任意一组相与,一定能得到a或b中的一个。
代码:
这里rightone=eor&(~eor+1)就是其原码与补码相与,这样可以得出最右边第一位为1的数,类似于000001000这样的数。
2.Master公式
对于递归的题目,如果拆成的子问题规模都一样,就可以调用master公式来计算这个算法的时间复杂度。Master公式为:
例如归并排序
https://blog.csdn.net/Currybeefer/article/details/107330525
这里子问题的规模是T(n/2),每次子问题调用2次,最后Merge()方法的复杂度是O(n),所以其时间复杂度套用master公式,计算式子为:
T(N)=2*T(n/2)+O(n)
符合(2)情况,计算的时间复杂度为O(nlogn)