题目就是问,在给与的数组中最大的子数组乘积会是多少,返回最大的这个乘机。 如[2,3,-2,4]的最大乘积子数组是2,3,因为2*3=6在这里最大。
乍一看,这不就动态规划嘛,我大手一挥,马上写出如下代码:
int maxProduct(vector<int>& nums)
{
int n=nums.size();
vector<int> dp(n, 0);
for(int i=1;i<n;i++)
{
dp[i]=max(nums[i], dp[i-1]*nums[i]);
}
int res=dp[0];
for(int i=1;i<n;i++)
res=max(res, dp[i]);
return res;
}
我认为,dp[i]代表到下标i为止的数组的子数组最大乘积。 对于每个dp[i]来说,每次可以做选择,要么选择与dp[i-1]结合,乘积为dp[i-1]*nums[i], 要么就不选择于之前结合,自己另起炉灶,直接等于nums[i]。每次选择的是这俩选择中值最大的一个。
提交运行,over!
然后很快啊,很快leetcode就他妈的判我错了
错在哪里了呢?
在这个用例中, 我的算法给出的是3,而真正的答案是24。
实际上,这个问题中,我给出的dp定义并不满足动态规划的最优子结构性质,具体来说,[-2,3,-4]中,实际上答案应该是整个数组的相乘才是最大的乘机。而整个数组元素相乘的过程中,如果没有乘到最后的-4,此时得到的是最小的乘机-6。
也就是说,因为有负数存在,一旦两个负数负负得正就会让某个极小的乘机突然变成极大的乘机。
顺着这个思路,我们得想到,我们需要再保存一个数组,这个数组用于维护乘机的极小值,因为这些极小值很有可能在乘以某一个数字的时候突然变为极大值。 我们需要两个dp数组来保存状态。
我们这里令 Fmax[i]表示到下标为i的元素为止的乘积的极大值,Fmin[i]表示到下标为i的元素为止的乘积的极小值。这样一来,我们可以得到如下代码:
int maxProduct(vector<int>& nums)
{
int n=nums.size();
vector<int> Fmax(n,0);
vector<int> Fmin(n,0);
Fmax[0]=nums[0];
Fmin[0]=nums[0];
for(int i=1;i<n;i++)
{
//Fmax[i]可能从之前的Fmax[i-1]取得,也有可能从极小值Fmin[i]取得,也有可能从nums[i]那里得到,所以是三选一
Fmax[i]=max(Fmax[i-1]*nums[i], max(nums[i],Fmin[i-1]*nums[i]));
//Fmin[i]可能从之前的Fmin[i-1]取得,也有可能从极大值Fmax[i]取得,也有可能从nums[i]那里得到,也是三选一
Fmin[i]=min(Fmin[i-1]*nums[i], min(nums[i],Fmax[i-1]*nums[i]));
}
int res=Fmax[0];
for(int i=1;i<n;i++)
{
res=max(res, Fmax[i]);
}
return res;
}
这题就做完了,主要是因为存在负数的关系,需要用两个数组互相保存状态,才能满足动态规划最优子结构的条件。