LeetCode 152 乘积最大子数组,一个奇特的动态规划问题

文章讲述了如何使用动态规划解决寻找给定数组中最大子数组乘积的问题。初始代码只考虑了正向累积的最大值,但在包含负数的数组中会导致错误答案。解决方案是引入两个数组,分别记录到当前位置的最大值和最小值,以处理负数相乘可能导致的极大值变化。最终的代码实现了正确计算最大乘积子数组的功能。
摘要由CSDN通过智能技术生成

在这里插入图片描述
题目就是问,在给与的数组中最大的子数组乘积会是多少,返回最大的这个乘机。 如[2,3,-2,4]的最大乘积子数组是2,3,因为2*3=6在这里最大。

乍一看,这不就动态规划嘛,我大手一挥,马上写出如下代码:

int maxProduct(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> dp(n, 0);
        
        for(int i=1;i<n;i++)
        {
            dp[i]=max(nums[i], dp[i-1]*nums[i]);
        }

        int res=dp[0];
        for(int i=1;i<n;i++)
            res=max(res, dp[i]);
        return res;
    }

我认为,dp[i]代表到下标i为止的数组的子数组最大乘积。 对于每个dp[i]来说,每次可以做选择,要么选择与dp[i-1]结合,乘积为dp[i-1]*nums[i], 要么就不选择于之前结合,自己另起炉灶,直接等于nums[i]。每次选择的是这俩选择中值最大的一个。

提交运行,over!

然后很快啊,很快leetcode就他妈的判我错了
在这里插入图片描述
错在哪里了呢?
在这里插入图片描述

在这个用例中, 我的算法给出的是3,而真正的答案是24。

实际上,这个问题中,我给出的dp定义并不满足动态规划的最优子结构性质,具体来说,[-2,3,-4]中,实际上答案应该是整个数组的相乘才是最大的乘机。而整个数组元素相乘的过程中,如果没有乘到最后的-4,此时得到的是最小的乘机-6。

也就是说,因为有负数存在,一旦两个负数负负得正就会让某个极小的乘机突然变成极大的乘机。

顺着这个思路,我们得想到,我们需要再保存一个数组,这个数组用于维护乘机的极小值,因为这些极小值很有可能在乘以某一个数字的时候突然变为极大值。 我们需要两个dp数组来保存状态。

我们这里令 Fmax[i]表示到下标为i的元素为止的乘积的极大值,Fmin[i]表示到下标为i的元素为止的乘积的极小值。这样一来,我们可以得到如下代码:

    int maxProduct(vector<int>& nums) 
    {
        int n=nums.size();
        vector<int> Fmax(n,0);
        vector<int> Fmin(n,0);
        
        Fmax[0]=nums[0];
        Fmin[0]=nums[0];
        
        for(int i=1;i<n;i++)
        {
        	//Fmax[i]可能从之前的Fmax[i-1]取得,也有可能从极小值Fmin[i]取得,也有可能从nums[i]那里得到,所以是三选一
            Fmax[i]=max(Fmax[i-1]*nums[i], max(nums[i],Fmin[i-1]*nums[i]));
            //Fmin[i]可能从之前的Fmin[i-1]取得,也有可能从极大值Fmax[i]取得,也有可能从nums[i]那里得到,也是三选一
            Fmin[i]=min(Fmin[i-1]*nums[i], min(nums[i],Fmax[i-1]*nums[i]));
        }

        int res=Fmax[0];
        for(int i=1;i<n;i++)
        {
            res=max(res, Fmax[i]);
        }
        return res;
    }

这题就做完了,主要是因为存在负数的关系,需要用两个数组互相保存状态,才能满足动态规划最优子结构的条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值