单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。
一.最短路径的最优子结构性质
该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。
假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
二.Dijkstra算法
由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,
假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。
1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;
2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})
3.知道U=V,停止。
代码实现:
#include <iostream>
#include<stack>
#define M 100
#define N 100
using namespace std;
{
int matrix[N][M]; //邻接矩阵
int n; //顶点数
int e; //边数
}MGraph;
{
int i,j,k;
bool *visited=(bool *)malloc(sizeof(bool)*g.n);
for(i=0;i<g.n;i++) //初始化
{
if(g.matrix[v0][i]>0&&i!=v0)
{
dist[i]=g.matrix[v0][i];
path[i]=v0; //path记录最短路径上从v0到i的前一个顶点
}
else
{
dist[i]=INT_MAX; //若i不与v0直接相邻,则权值置为无穷大
path[i]=-1;
}
visited[i]=false;
path[v0]=v0;
dist[v0]=0;
}
visited[v0]=true;
for(i=1;i<g.n;i++) //循环扩展n-1次
{
int min=INT_MAX;
int u;
for(j=0;j<g.n;j++) //寻找未被扩展的权值最小的顶点
{
if(visited[j]==false&&dist[j]<min)
{
min=dist[j];
u=j;
}
}
visited[u]=true;
for(k=0;k<g.n;k++) //更新dist数组的值和路径的值
{
if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])
{
dist[k]=min+g.matrix[u][k];
path[k]=u;
}
}
}
}
{
stack<int> s;
int u=v;
while(v!=v0)
{
s.push(v);
v=path[v];
}
s.push(v);
while(!s.empty())
{
cout<<s.top()<<" ";
s.pop();
}
}
{
int n,e; //表示输入的顶点数和边数
while(cin>>n>>e&&e!=0)
{
int i,j;
int s,t,w; //表示存在一条边s->t,权值为w
MGraph g;
int v0;
int *dist=(int *)malloc(sizeof(int)*n);
int *path=(int *)malloc(sizeof(int)*n);
for(i=0;i<N;i++)
for(j=0;j<M;j++)
g.matrix[i][j]=0;
g.n=n;
g.e=e;
for(i=0;i<e;i++)
{
cin>>s>>t>>w;
g.matrix[s][t]=w;
}
cin>>v0; //输入源顶点
DijkstraPath(g,dist,path,v0);
for(i=0;i<n;i++)
{
if(i!=v0)
{
showPath(path,i,v0);
cout<<dist[i]<<endl;
}
}
}
return 0;
}
L2-001. 紧急救援
作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。
输入格式:
输入第一行给出4个正整数N、M、S、D,其中N(2<=N<=500)是城市的个数,顺便假设城市的编号为0~(N-1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。
输出格式:
第一行输出不同的最短路径的条数和能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出首尾不能有多余空格。
输入样例:4 5 0 3 20 30 40 10 0 1 1 1 3 2 0 3 3 0 2 2 2 3 2输出样例:
2 60 0 1 3
#include <iostream> #include <cstdio> #include<cstring> using namespace std; const int inf = 65535; int N, M, S, D; int dis[550], vis[550], val[550], sum[550], pre[550], cnt[550]; int map[550][550]; void path(int d) //输出 { if(pre[d] != -1) { path(pre[d]); cout << pre[d] << " "; } } int main() { cin >> N >> M >> S >> D; int i, j; for(i=0; i<N; i++) { cin >> val[i]; } for(i=0; i<N; i++) //初始化各数组 { for(j=0; j<N; j++) { if(i==j) map[i][j] = 0; else map[i][j] = inf; } dis[i] = inf; vis[i] = 0; sum[i] = 0; pre[i] = -1; cnt[i] = 0; } int x, y, z; for(i=0; i<M; i++) { cin >> x >> y >> z; map[x][y] = z; map[y][x] = z; } dis[S] = 0; vis[S] = 1; sum[S] = val[S]; cnt[S] = 1; for(i=0; i<N; i++) // Dijkstra 算法 { int minn = inf, mini = S; for(j=0; j<N; j++) { if(vis[j]==0 && dis[j]<minn) { minn = dis[j]; mini = j; } } vis[mini] = 1; for(j=0; j<N; j++) { if(vis[j]==0) { if(dis[j] > map[mini][j]+dis[mini]) { dis[j] = map[mini][j] + dis[mini]; sum[j] = sum[mini] + val[j]; pre[j] = mini; cnt[j] = cnt[mini]; } else if(dis[j] == map[mini][j]+dis[mini]) { cnt[j] = cnt[mini] + cnt[j]; if( sum[j] < sum[mini]+val[j] ) { sum[j] = sum[mini]+val[j]; pre[j] = mini; } } } } } cout << cnt[D] << " " << sum[D] << endl; path(D); cout << D << endl; return 0; }